
 

Measurement in the Sciences 

If, in a discussion about buying a new table, your spouse were to say to you, “I measured 

the width of the room and …” you would not expect the conversation to degenerate 

immediately into a discussion about what is width, or what does measured mean, or who 

made your yardstick, or what units you used.  But if, in a discussion with the school 

guidance counselor, you are told, “I measured the intelligence of your child and …” you 

could, and probably should, ask those same questions, although they probably won’t be 

any more warmly received in the guidance office than they were in the dining room. 

It’s not simply a distinction between the physical and the social sciences.  The distinction 

is more between the states of the arts than anything fundamental to their essence; the 

physical sciences have already confronted (surprisingly recently) the basic questions and 

reached consensus (always more or less provisionally) on what the relevant aspects are 

and how they are to be measured.  In social sciences, we seem stuck in the 19th century 

and persist in talking about things that aren’t measures and every lord insists on using his 

own scale. 

What Do We Mean When We Say We Have Measured? 

Suppose at the beginning of the school year, your daughter takes a math test and gets a 

score of, say, 52.  At the end of the year, she takes a different test and gets a score of, say, 

23.  Did she make progress?  What if the end-of-year score were 52?  Or 75? 

Here’s almost the same conversation in a different context.  On January 1, you measure 

your son’s height and get a measurement of 64.  A few months later, preparing for the 

start of the new school year, in the course of a physical exam, the nurse measures and 

reports his height as 173.  Has he grown?   

You probably guessed that the first measurement of your son’s height is inches and the 

second is centimeters.  If you must do the math, either multiply the first or divide the 

second by 2.54 to get both measures in the same units, either centimeters or inches; it 

doesn’t matter which.  If you are doing the back-to-school clothes shopping, you 

probably don’t need to do the math to know your son has grown four inches or 10 

centimeters.   

If your daughter is still talking to you, you understand, without the need to understand the 

test scores, that she knows things at the end of the year that she didn’t know at the start, 

some of which she learned in math class.  While measurement is measurement, there are 

some important things lacking from the math example that are present in the height 

example. 

First, the units we use to describe height are well established and we have no difficulty 

converting from one to another and comparing one measure with another.  In the school 

growth problem, we have no idea what the units are.  Even I had said the scores are both 

number correct, or percent correct, or percentile ranks, or stanines, or scale scores, it still 

would not be clear how the first score compares to the second, regardless of whether you 

are a psychometrician or a regular parent. 

Second, the agents we use to measure height are well established.  We do not care much 

if the first measurement was made with a cheap wooden yardstick given away by the 



 

lumberyard and the second with a precisely etched, stainless steel rule intended for use in 

a physics laboratory.  Either instrument is valid enough and reliable enough for the 

purposes we have in mind here.  

The measurement of the height of a person and the distance to Alpha Centauri would be 

obtained using very different tools but, once we know that the tool was appropriate for 

the situation, we don’t need anything more to interpret and compare the two measures. 

For the educational measurement, we are paralyzed until we know exactly what the 

instrument is that was used and even then we are (or should be) rather tentative in our 

interpretations.   

Most importantly, with height, we have a good idea and almost universal agreement 

about what the aspect is that we are measuring.  We talk about it with confidence for the 

height of people, the width of rooms, the length of homeruns, the size of atoms, or the 

distance between galaxies.  With math, we aren’t sure if we are talking about the same 

aspect for seventh graders that we were for sixth graders. 

The math example does not rise to a level that I am willing to call measurement. 

None of this means that measuring cognitive growth is fundamentally different from or 

intrinsically more difficult than measuring physical growth.  But we are more 

experienced with the physical, more in agreement about how to go about it, and more 

comfortable with our results.  We understand that physical growth has spurts and 

plateaus, that the pattern of the events is pretty much the same for every individual, and 

that individuals vary by months, even years, in the timing of the events.  Within some 

rather loose bounds, we expect and tolerate these individual differences in physical 

development.  Once we understand cognitive development better, it would be very 

startling indeed if it turned out to be any less interesting or less individualized than 

physical development. 

Fundamental Measurement 

L. L. Thurstone, in the 1920’s, defined two simple symmetrical conditions that must be 

met to be worthy of his notion of fundamental measurement: 

 The measurement of the object must be independent of the particular agent used 

for the measuring. 

 The calibration of the agent must be independent of the particular people used for 

the calibrating. 

In our examples, the objects are your daughter and son, and the agents are the tests and 

the rulers, the aspects are math proficiency and height.  Thurstone’s first condition means 

we don’t care if you used the wooden yardstick, the stainless steel rule, the Hubble 

telescope, or a piece of string, so long as the agent was appropriate for the object and the 

purpose.  The second condition means we don’t care who else has been measured with 

the instrument.  This effectively eliminates percentiles, stanines, and p-values as possible 

measures because they compare the individual to some arbitrary group, not to a fixed 

standard.  They are sample-dependent, and thus, paraphrasing Rasch, scientifically rather 

uninteresting. 



 

For Thurstone, fundamental measurement was the goal; for Rasch, specific objectivity is a 

reaffirmation of that goal and the method for achieving it.  Thirty years after Thurstone 

told us where to go; Georg Rasch told us how to get there. 

The Trouble with Rasch 

At the risk of giving away my punch line too early and losing readers who thought 

perhaps I had been converted, the trouble with Rasch is that it leads to solutions that are 

too obvious to publish.  Hence this undertaking.  Most real world measurement problems 

can be effectively disposed of with counts, sums, and differences.  In the nineteen fifties, 

Georg Rasch (1960) was solving problems manually, often graphically; Douglas (1974) 

and Wright and Stone (1979) provide some approximate solutions that are almost always 

close enough and, though perhaps tedious, can be carried out without the benefit of 

computers.  Early calibration programs CALFIT and BICAL (Wright, Mead, and Bell, 

1976) ran on a mini-computer that would not fit in your dining 

room and had less memory (by several orders of magnitude) than 

your cell phone.  The simple solutions aren’t what the journals are 

looking for or the psychometrician guild wants to debate. 

Before we get too complacent about how easy this is going to be, 

the model requirements are brutal.  In its simplest incarnation and slipping perilously 

close to Metaphysics, the requirement is that all items, however imperfect, are equally 

valid and equally reliable instances of the idea.  Success often means painful revisions of 

our pet theory and abandonment of our favorite agents.  Attaining Rasch nirvana does not 

allow giving up on measurement, applying esoteric mathematics to a more complex 

model, and settling for explaining the data in the barren statistical sense.  

Thurstone defined fundamental measurement; Rasch gave us the principles and methods 

for attaining it, when pursued with sufficient determination.  There are three inseparable 

properties inherent in Rasch measurement, which might be described as the 

mathematical, the statistical, and the philosophical: 

 Separability: the parameters are mathematically separate in the statement of the 

model,  

 Sufficiency: the parameters have simple sufficient statistics for their estimators, 

and 

 Specific objectivity: objective because any appropriate agent will do and specific 

because no agent is universally appropriate.   

Wright (1968) coined the terms “person-free item calibration” and “item-free person 

measurement” to describe the two faces of specific objectivity in less philosophically 

precise language than Rasch used; perhaps Wright feared Rasch’s phrase was beyond his 

audience.  Perhaps he should have said freed rather than free; he certainly did not mean 

you can calibrate a test without giving it to some people.  Rasch and Wright did mean 

that it does not matter what people you give it to, within limits.  Within limits means the 

people have to interact with the items in a legitimate way.  You need agents and a setting 

that allow the aspect to reveal itself.  One would not try to calibrate a yardstick by 

comparing it to planets or to measure the height of basketball players while they are 
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actively involved in a game; one would not try to calibrate a certifying test for 

astrophysicists with a sample of fourth graders or undergraduate psychology students. 

I would like to add a couple more S’s to the standard trilogy: Simplicity and Symmetry.  

The simplicity shows in the arithmetic, algebra, or calculus (depending on your level of 

mathematical sophistication) but because this is a philosophy book, there is surprisingly 

little of those activities here. The true test of simplicity is in the application. The essence 

of the model (the kernel, if you will) is no more complex or less profound (somewhat less 

monumental in its impact perhaps) than Newton’s tour de force: F = ma. Estimation of 

item or equating parameters can be as simple as taking row averages. Control of the 

model requires recognizing easy items missed by high ability examinees or hard items 

passed by low ability examinees. 

The physical symmetry that we all are familiar with has to do with shapes and rotations. 

The idealized human body has bilateral (or mirror image) symmetry. A snowflake has six 

axes of symmetry; its shape is invariate to rotations on any of the six. A sphere can be 

rotated all you want and nothing changes. Mathematicians, of course, have taken this 

simple idea and generalized it to mean invariance of important properties to particular 

transformations. The question then comes down to what transformations and what 

properties. 

The Rasch model has mathematical symmetry on a couple levels. At the first level, the 

person parameter and item parameter have identical status in the model’s expression. 

They could be reversed and nothing would change except the signs (and we would be 

talking about the item anti-difficulty and the person anti-ability.) Equivalently, almost 

anything we have said, or will say, about the object, we could turn around say about the 

agent and be equally appropriate. 

The invariance that is part and parcel of symmetry also defines Rasch’s Specific 

Objectivity and Thurstone’s Fundamental Measurement. The relationship between two 

objects, between two agents, or between an object and an agent must not be affected by a 

change in the scaling, to the location on the scale, or the particular company the objects 

and agents are keeping.  A physicist might describe a Rasch analysis as an exploration of 

the limits of symmetry; Rasch called it controlling the model; I see it as the check for 

smart people who missed easy items and not smart people who passed hard items.  

The other trouble with Rasch, the one that made its distracters decide it doesn’t work, is 

that applying Rasch’s methods to build an instrument that conforms to Rasch principles is 

it’s too hard.  It requires a theoretical basis for the specific aspect of the object (e.g., 

person) that we wish to measure and very cleverly and creatively devising agents (e.g., 

items) that will expose that aspect and a rigorous application of Rasch’s methods to 

control the situation.  That’s a much higher degree of difficulty than turning the crank to 

run some data through some canned software. 

The Holy Grail of Psychometrics: A Small Illustration of Specific Objectivity 

Let’s start slow, with a two-item test.  After we give it to the 40 students in a school and 

at a level that we believe appropriate, we might observe the frequency distribution shown 

in the Hawthorne column of Table I.1.  Thinking so far so good, we give our test in 

another school with 100 students and get the frequencies in the Irving column.  You don’t 



 

need the Rasch model or a psychometrician to see that the Hawthorne students performed 

better than the Irving students but the table doesn’t really tell us how much better nor 

does it tell us anything about how the items behaved or compare. 

Table I.1: Frequencies for a Mythical Two-Item Test in Two Hypothetical Schools 

Raw 

Score 
Hawthorne Irving 

0 8 38 

1 16 44 

2 16 18 

If we get a little more detail by breaking apart the students with raw scores of one, we get 

the Hawthorne results in Table II.2a, which shows the four rows: Wrong-Wrong, Right-

Wrong, Wrong-Right, and Right-Right.   

Table II.2a: Detailed Hypothetical Frequencies for Hawthorne 

Hawthorne 

Raw Score Item 1 Item 2 Count 

0 Wrong Wrong 8 

1 Right Wrong 12 

1 Wrong Right 4 

2 Right Right 16 

The students who got both items right and the students who got both items wrong tell us 

nothing about which item is harder; either both items were below the level of the student 

or both items were above.  But comparing the two remaining observations, the number 

who have Item 1 right and Item 2 wrong versus the number with Item 1 wrong and Item 2 

right, gives a ratio D2 = 12 / 4 = 3.   This is the relative difficulty of item 2 compared to 

item 1; because it is relative, the difficulty for item 1 can be declared D1 = 1. 

Table II.2b: Detailed Hypothetical Frequencies for Irving 

Irving 

Raw Score Item 1 Item 2 Count 

0 Wrong Wrong 38 

1 Right Wrong 32 

1 Wrong Right 12 

2 Right Right 18 

If we repeat this exercise using the Irving data, we get Table II.2b and the relevant ratio is 

D2 = 32 /12 = 2.667, which allowing for rounding errors caused by the small samples and 

the restriction we only have whole students, is close enough to 3.  In spite of differences 

in the performances in the two schools, the relationship between the two items is the 

same.  This is person-freed item calibration. 

We will go one step further and take the natural log of the ratios, for reasons not yet 

disclosed, which gives values of ln(3) = 1.10 and ln(2.667) = 0.98.  We can then say that 

Item 2 is about one logit more difficult than Item 1. (And it does not matter if we declare 

item 1 to have a logit of zero, ten, or 451; item 2 will always be one logit more difficult.) 

This is the simplest illustration of specific objectivity: the two measures of the relative 

difficulties for the two items were (nearly) identical, although the samples were different 



 

students, and the raw score frequency distributions were different, and the proportions 

correct for each item were different.1 

Measures for the Two Schools 

We are now in a position to compute a measure for each group of students.  Because we 

are in the wonderful world of Rasch, we can base our measures on either item 1 or item 2 

and get statistically equivalent results; we will figure out later how to consolidate the 

information.  And using an expression 
𝐵

𝐷
=

𝑁10+𝑁11

𝑁00+𝑁01
, which we will explain later and the 

data from Table II.2a, the measure for Hawthorne is either: 

1. 33.2
48

1612
11 




 DH , (with a natural log of 0.85,) using item 1 or 

2. 667.2
128

164
22 




 DH , (with a natural log of 0.98,) using item 2. 

In each case, these start with the number of rights divided by the number of wrongs.  The 

analogous calculations for Irving and Table II.2b are: 

3. 0.1
3812

3218
11 




 DI , (natural log = 0.0), or 

4. 14.1
3832

1218
22 




 DI , (natural log = 0.13.) 

Hawthorne is about 0.85 – 0.0 or 0.98 – 0.13 logits above Irving, depending on whether 

item 1 data or item 2 data are used, which isn’t bad for estimates based on single items. 

I might seem to violating my property of symmetry by not computing the measures for 

the schools in the same way I did for items.  However, we are at a different stage in the 

process; we used the items to define and anchor the scale (i.e., item 1 is logit 0.)  The 

school measures are calculated on the scale we established with the items.  The entire 

process could be flipped and students used to define and anchor the scale. 

Rasch Measurement as Foreign Language 

The first Rasch phrase, which underlies all Rasch models, that you will need to use in 

conversations is: 

5. 
iv

v

vi
B

B
P


 ,   where Bv quantifies the aspect in the object and 

i quantifies the aspect in the agent. 

                                                 
1
Now for the fine print and disclaimers.  These data were simulated with samples one logit apart and items 

one logit apart.  Had we used expected values and the full precision of the spreadsheet program in the 

calculations rather than whole numbers, both schools would have returned the generating value of 2.718.  

The corresponding logit would be 1.  We have to live with whole students. 

 



 

This simple expression captures Rasch’s requirement that the probability of success on a 

trial is determined solely by the object’s power and the agent’s resistance.  Translating 

into words that might be used in a school conversation, the chance that a student will 

answer an item correctly depends on only two things: how able the student and how hard 

the item. 

My nomenclature has vacillated between too formal and too casual.  I should perhaps 

provide today’s vocabulary list. 

Aspect is the property, attribute, characteristic, trait, construct, proficiency, ability, 

attitude, aptitude, propensity, power, intensity, etc. that we are interested in measuring.  It 

could be the height of a building, mathematical proficiency of a student, mass of a star, 

mechanical dexterity of a recruit, political leaning of a likely voter, specific gravity of a 

liquid, hardness of a rock, acidity of a wine, speed of an athlete, and on and on.  An 

aspect is not a thing, but a property of things. 

Object is the thing, the thing that contains the aspect we are trying to measure.  In social 

sciences, the object is usually a person in some role, e.g., a student, patient, applicant, 

candidate, subject, customer, consumer, citizen.  Physical sciences are not so restricted; 

their things can cover a much broader range, e.g., quarks, galaxies, minerals, rooms, 

tables, whales, or people.  An object can have many aspects, e.g., size, height, weight, 

mass, color, temperature, heat, density, wave length, language fluency, musicianship, 

political preference, athleticism, sensation of pain, flexibility, but we try very hard to 

measure one at a time.  

Agent is the measuring instrument, e.g., the ruler, test, item, questionnaire, scale, 

thermometer, odometer, spectrometer, or almost any device whose name ends in –meter 

and many that end in -scope.  The art of measurement involves devising an agent that will 

effectively isolate the aspect we are pursuing for the objects that we have. 

Ability is the generic term commonly used in the Rasch literature, including this piece of 

literature, to label the measurement scale for the aspect.  It shouldn’t be taken to mean 

any more than that.  The term implies nothing about where the person got it, whether it’s 

nature or nurture, which direction is up, if it can be manipulated, or how much is enough. 

We could be even more erudite and call it or without implying any more or less. 

Difficulty is a generic term commonly used to label the scale for the aspect in the item. 

For educational assessment, it is simply how difficult the item is to respond to correctly, 

compared to other items.  For measuring length, a difficult ruler would be one that is 

longer than the other rulers, making it appropriate for bigger objects.  The term makes 

some sense in educational assessment; not so much in other areas like attitudes or 

opinions. The distinction between the ability of a person and the difficulty of an item is 

purely semantic and convention; they are expressed in the same units, may be plotted on 

the same scale, and subtracted and compared at will2. 

Logit is the native unit of Rasch measurement.  It is the log odds that the object will best 

the standard agent; in the language of expression 5, B/ are the odds and its natural log is 

                                                 
2 If we are talking about the same aspect measured with “equated” instruments, which begs a couple 

questions that we will attempt to dispose of in later chapters. Don’t try to subtract and compare degrees 

Kelvin with degrees Fahrenheit or height with reading proficiency. 



 

the logit.  They are not standard normal deviates but they look a lot like them; -4 is a 

large negative and +4 a large positive.  Log odds, or logits, are convenient for doing the 

arithmetic but probably shouldn’t appear in public without some sort of camouflage.   

The basic Rasch model is normally written in logits, which emphasizes the importance of 

the difference between the object and the agent, , which we might call the kernel of 

the expression: 

6. 
1















e

e
P ,  where  and  are the logit versions of the ability and 

difficulty parameters and equal to the natural logs of 

 and  respectively. 

I will generally follow the venerable statistical convention of using the Greek alphabet 

when I mean the model parameters (e.g., ) and the Latin alphabet to mean the 

estimates of those parameters (e.g., B, D, b, d). 

Scale Scores are the camouflaged versions of logits, which can make them suitable to be 

seen in public.  They are a linear transformation, which means you start with the logit, 

then multiple by something and add something.  The idea is to make them easier to use, 

interpret, and remember without losing the interval scale properties of logits.  While the 

somethings you use to multiple and to add can be freely chosen to give whatever scale 

you like, they are typically chosen to label our two favorite points with nice values.   

Scale scores have no inherent meaning. They’re just labels; the validity and meaning of 

the scale do not depend on how the labels are chosen.  The point at which water changes 

from a liquid to a solid is the same point and has the same consequences to us whether we 

chose to label it 0°C, 32°F, 273° Kelvin, or 492° Rankin. As labels, they have no 

meaning until we attach meaning.  The label 492°R starts to become meaningful when we 

are told it is the freezing point of water; a temperature of 37°C has meaning in most of 

the world but doesn’t in the US until you know it is the normal temperature of the human 

body measured orally; a scale score of, say, 1300 may have some meaning if we know 

this is the mean score of 11th graders in the base year.  

Meaning comes from our own experience and through milestones others provide to us. 

Carefully chosen, the labels we use should facilitate the process of defining aspects and 

communicating measures. Meaning and communication have more to do with the 

science, purpose, and audience than with the psychometrician. We could live quite full 

and happy lives without scale scores. 

 


