
Model Control ala Choppin 

The exposition that follows is based on the Pair estimation method suggested by Bruce 

Choppin (1968) when computers were new, slow, and expensive. The method is the basis 

of the estimation used in our earlier discussions. The Pairwise procedure provides 

opportunity for interesting investigations for model control, which could be conducted 

using any of the matrices of the last couple submissions: the 2x2 Nij matrix for each item 

pair, the LxL N*-matrix of paired comparisons, or the R-matrix of relative difficulties 

(i.e., log odds.)  Since all are based on more or less the same data, the results will be 

similar.  However, since they use the data in different ways, there will be some 

differences. One uses a rather heuristic standard error, one assumes one count or another 

is fixed, and the third uses information that wasn’t part of the estimation. All are 

addressing the question, Is the behavior of this item pairing consistent with everything 

else we know? 

The Matrix of Log Odds: R 

The R-matrix is the log odds comparing pairs of items. Each element rij = ln (nji / nij) 

starts with the ratio of the number of examinees for whom item i was harder than j versus 

the number for whom j was harder than i. This is a simple, direct estimate of the 

difference in logit difficulties i – j, which is based only on examinees who took that 

pair of items.  

The relative difficulty of the two items is estimated more reliably, given the model, by 

the marginal estimates di and dj, which use data from every pair involving either of the 

items.  Using the earlier suggestion for standard error of rij in the denominator gives a 

familiar looking form: 
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This statistic tests if the direct estimate from the ij pair is consistent with all the 

information we have about the two items from all other pairings.  It makes no assumption 

about the form of the model but does depend on the heuristic standard error estimate and 

there is a bit of a problem with a lack of independence because rij contributed to the 

estimates of the difficulties. Still if this yields a “big” number, there is something funny 

about the ij pair. The funny thing may be one item tips the other or it may relate to the 

specific examinees who took this pair. Diagnosis requires more than statistical rules of 

thumb about when a number is “big.”  

The Matrix of Counts: N* 

The element nij of N* is the number of examinees who missed item i and passed j. The 

bigger nij is compared to nji, the more difficult item i is compared to j. Each pair of counts 

in the N* matrix can be used to compute a statistic that has the form of a 2 and addresses 

the question in a slightly different way.  We know from the last chapter that nij / nji should 

equal Dj / Di, where Dj = ed
j. Given the marginal estimates, di and dj, and the count nji, we 

can ask how big nij should be? One can compute an expected value for either count as: 
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The calculation of the expected number missing i and passing j starts with the estimated 

item difficulties as givens and the number nji who miss j but pass i as fixed. The 

downside is that this calculation will be volatile (partly from rounding error) if nji is 

small.  

We can take a slightly different tack and assume that nij + nji is the fixed bit, rather than 

nji, and apportion the total count to the two components based on the odds: 
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We can put this into a form that looks like a chi-square,  
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All of this is subject to the usual limitations and caveats about minimum counts. But it 

does not depend on anybody’s guess at a standard error. 

The Two-by-Two Paired Matrix: Nij 

Finally, the Nij-matrices suggest another possible control. For each pair of items, there are 

four possible outcomes. 

 
Item i 

Wrong Right 

Item j 
Wrong n00 n10 

Right n01 n11 

Each cell in each matrix contains the count of the examinees who had the appropriate pair 

of scores on items i and j.  An expected value can be computed for each score pattern 

using the model and the best ability estimate we have for each person. 
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 , x = 0 or 1 on item i; y = 0 or 1 on item j, 

where N is the total number of examinees who attempted the item pair, and Pvi(x) is the 

probability that person v will score x on item i.   
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With these expected and observed counts, another standard 2 goodness-of-fit statistic can 

be computed for each Nij-matrix; identical in form to expression 47 and summed over the 

four cells.   



This computation differs from the first two controls in at least one significant way. The 

upper left cell (both items incorrect) and the lower right cell (both items correct) are 

included, although neither cell is part of the estimation. 

Because the people can take different item sets (which is one of the strengths of the Pair 

algorithm) rather than a fixed form, the summation in expression 48 and subscript for 

ability in expression 49 are for the people rather than the scores. If a fixed form is used, 

we can continue to index ability by r, the number correct score, and the computer’s job is 

a little easier. 

While the form of each of these statistics suggests a possible distribution, I will leave 

them as suggestions and avoid definitive statements. The statistics are included here as a 

starting point in that discussion and to re-emphasize the importance of model control to 

the application of Rasch models. 

A Little Arithmetic: t-test Example 

To illustrate the calculations for the control process, we will use the same data for a five-

item test and 500 simulated examinees that were used earlier to illustrate the difficulty 

estimation process. The matrix R of log odds, with the difficulty estimates in the last 

column, is again: 

Table IV.1: Matrix of Log Odds, Five items, 500 Examinees 

R-Matrix of Log Odds 
Recovered 

Difficulties 

 -1.764 -2.471 -3.850  -2.795 

1.764  -0.869 -1.908 -4.373 -1.077 

2.471 0.869  -1.007 -3.034 -0.140 

3.850 1.908 1.007  -2.180 0.917 

 4.373 3.034 2.180  3.095 

Cells (1,5) and (5,1) are empty because there was no data to provide a direct estimate of 

the two difficulties. The expected values for each entry in the R-matrix are based on the 

difficulty estimates for the appropriate pair of items: 

Table 4.3: Expected Value for Each Entry from the Margin 

Expected Log Odds for Entry 

0.000 -1.718 -2.655 -3.712 -5.891 

1.718 0.000 -0.937 -1.994 -4.173 

2.655 0.937 0.000 -1.057 -3.236 

3.712 1.994 1.057 0.000 -2.178 

5.891 4.173 3.236 2.178 0.000 

For example, the expected value for row 3, column 5 is the estimated difficulty (from 

Table 4.1) for item 3 minus the estimated difficulty for item 5, or: 

50. 235.3095.3140.0ˆ
35 R . 

The standard errors for each entry in the R-matrix are based on the number of useful 

observations: 

Table 4.2: Standard Errors for Log Odds 



Standard Errors for Entry 
Standard 

Error for 

Margin 

 0.221 0.213 0.292  0.244 

0.221  0.117 0.123 0.252 0.188 

0.213 0.117  0.090 0.137 0.146 

0.292 0.123 0.090  0.103 0.173 

 0.252 0.137 0.103  0.176 

The t-statistic for cell (3,5) is: 
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which is within rounding error of the value in the table below1. This happens to be the 

largest value in the table and this is probably the only time I’ve ever said that about a t = 

1.47. 

Table 4.4: t-Statistics for Each Entry Based on Log Odds  

t-Statistic for Entry 

 -0.21 0.87 -0.47  

0.21  0.58 0.70 -0.80 

-0.87 -0.58  0.56 1.47 

0.47 -0.70 -0.56  -0.02 

 0.80 -1.47 0.02  

 

A Little Less Arithmetic; More Interesting Example 

Simulated data has its uses but diagnosing sources of anomalies isn’t one. For a more 

interesting example, I return to the football field. In an earlier section, we arrived at logit 

measures of proficiency for the 32 professional teams in the National Football League 

based on 2012 results. The table below starts with the logits for the twelve teams that 

qualified for post-season play (third column or third row). The entries in the body of the 

table, also logits, describe an encounter between the row team and the column team and 

are simply the row logit minus the column logit. For example, the Minnesota Vikings 

have a logit of 0.25 and the Green Bay Packers a logit of 0.30, hence the logit for the 

Vikings against the Packers is 0.25 – 0.30 = -0.05. In words, the Packers are slightly 

favored.  

A positive value in a cell implies the row team is favored; a negative value, the column 

team is favored. The entire row for the San Francisco 49ers is positive so it should beat 

any of the other eleven teams. By contrast, the Vikings should lose to any other NFC 

team except Washington (d97 = 0.16) and beat every AFC team except Denver (d96 = 

0.27). 

The first table shows our expectation, in logits, for any of the 66 games that might be 

played among the twelve playoff teams. Eleven games were actually played. The eleven 

                                                 
1 The tables shown here used the full precision of the spread sheet program; the arithmetic done here used 

the three digits shown. 



are highlighted in yellow for the favored team; there is an equal but opposite value for the 

unfavored team.  

First Table: Expected Logits for 66 Possible Games for the 12 Playoff Teams 

  Team NE Cin Bal Hou Ind Den Was GB Mn Atl SF Sea 

 Team Logit 0.53 0.22 0.11 0.23 -0.21 0.52 0.09 0.3 0.25 0.52 0.61 0.58 

AFC Patriots 0.53 0.00 0.31 0.42 0.30 0.74 0.01 0.44 0.23 0.28 0.01 -0.08 -0.05 

AFC Bengals 0.22 -0.31 0.00 0.11 -0.01 0.43 -0.30 0.13 -0.08 -0.03 -0.30 -0.39 -0.36 

AFC Ravens 0.11 -0.42 -0.11 0.00 -0.12 0.32 -0.41 0.02 -0.19 -0.14 -0.41 -0.50 -0.47 

AFC Texans 0.23 -0.30 0.01 0.12 0.00 0.44 -0.29 0.14 -0.07 -0.02 -0.29 -0.38 -0.35 

AFC Colts -0.21 -0.74 -0.43 -0.32 -0.44 0.00 -0.73 -0.30 -0.51 -0.46 -0.73 -0.82 -0.79 

AFC Broncos 0.52 -0.01 0.30 0.41 0.29 0.73 0.00 0.43 0.22 0.27 0.00 -0.09 -0.06 

NFC Washington 0.09 -0.44 -0.13 -0.02 -0.14 0.30 -0.43 0.00 -0.21 -0.16 -0.43 -0.52 -0.49 

NFC Packers 0.30 -0.23 0.08 0.19 0.07 0.51 -0.22 0.21 0.00 0.05 -0.22 -0.31 -0.28 

NFC Vikings 0.25 -0.28 0.03 0.14 0.02 0.46 -0.27 0.16 -0.05 0.00 -0.27 -0.36 -0.33 

NFC Falcons 0.52 -0.01 0.30 0.41 0.29 0.73 0.00 0.43 0.22 0.27 0.00 -0.09 -0.06 

NFC 49ers 0.61 0.08 0.39 0.50 0.38 0.82 0.09 0.52 0.31 0.36 0.09 0.00 0.03 

NFC Seahawks 0.58 0.05 0.36 0.47 0.35 0.79 0.06 0.49 0.28 0.33 0.06 -0.03 0.00 

The second table shows the points scored by each team in the eleven playoff games, with 

the winning score highlighted. If every game had followed our expectation, the same 

cells would be highlighted as in the first table; not everything went quite as we expected. 

Second Table: Scores of Eleven Games Actually Played 

  Team NE Cin Bal Hou Ind Den Was GB Mn Atl SF Sea 

 Team Logit 0.53 0.22 0.11 0.23 -0.21 0.52 0.09 0.3 0.25 0.52 0.61 0.58 

AFC Patriots 0.53   13 41         
AFC Bengals 0.22    13         
AFC Ravens 0.11 28    24 38     34  
AFC Texans 0.23 28 19           
AFC Colts -0.21   9          

AFC Broncos 0.52   35          

NFC Washington 0.09            14 
NFC Packers 0.30         24  31  
NFC Vikings 0.25        10     
NFC Falcons 0.52           24 30 
NFC 49ers 0.61   31     45  28   
NFC Seahawks 0.58       24   28   

The entries in each row are the points scored by the team; the values in the column are 

the points allowed. The Vikings scored 10 but allowed 24; the Packers scored 24 and 

allowed 10. These scores can be used to compute an observed logit; i.e., Vikings versus 

Packers = ln(10/24) = -0.88. Comparing this to the expected value of -0.05 in the first 

value says that the Vikings lost as expected (because both values are negative) but lost 

more handily than expected (because -0.88 is more negative than -0.05.) Complementary 

comments can be made about the Packers, but they may be less than complimentary 

outside of Wisconsin.  



The third table has the observed logits for the eleven games. A positive value in a row 

means the team won; if it is larger than the expected value in first table, the team won by 

more than expected. 

Third Table: Observed Logits for Eleven Games Actually Played 

  Team NE Cin Bal Hou Ind Den Was GB Mn Atl SF Sea 

 Team Logit 0.53 0.22 0.11 0.23 -0.21 0.52 0.09 0.3 0.25 0.52 0.61 0.58 

AFC Patriots 0.53   -0.77 0.38         

AFC Bengals 0.22    -0.38         

AFC Ravens 0.11 0.77    0.98 0.08     0.09  

AFC Texans 0.23 -0.38 0.38           

AFC Colts -0.21   -0.98          

AFC Broncos 0.52   -0.08          

NFC Washington 0.09            -0.54 

NFC Packers 0.30         0.88  -0.37  

NFC Vikings 0.25        -0.88     

NFC Falcons 0.52           -0.15 0.07 

NFC 49ers 0.61   -0.09     0.37  0.15   

NFC Seahawks 0.58       0.54   -0.07   

The fourth table makes the comparisons easier by subtracting the expected from the 

observed and standardizing by dividing by something that might be a standard error (or 

proportional to it.) We have been playing rather fast and loose with the model by treating 

points scored like counts but bigger numbers in the table will still indicate bigger 

surprises than small numbers. It probably comes as no surprise to any follower of 

American football in 2012 that four of the five biggest playoff surprises are associated 

with the Baltimore Ravens. The other surprise, perhaps not in Minnesota, was how 

convincingly the Vikings lost to the Packers. 

Fourth Table: “Standardized” Values of Observed Logits for Games Actually Played 

  Team NE Cin Bal Hou Ind Den Was GB Mn Atl SF Sea 

 Team Logit 0.53 0.22 0.11 0.23 -0.21 0.52 0.09 0.3 0.25 0.52 0.61 0.58 

AFC Patriots 0.53   -7.1 0.7         
AFC Bengals 0.22    -2.1         
AFC Ravens 0.11 7.1    3.4 4.2     4.8  
AFC Texans 0.23 -0.7 2.1           
AFC Colts -0.21   -3.4          

AFC Broncos 0.52   -4.2          

NFC Washington 0.09            -0.3 
NFC Packers 0.30         4.4  -0.5  
NFC Vikings 0.25        -4.4     
NFC Falcons 0.52           -0.5 1.0 
NFC 49ers 0.61   -4.8     0.5  0.5   
NFC Seahawks 0.58       0.3   -1.0   

With these data for these eleven games, it happened that every winning score (second 

table) is associated with a positive residual (third table) but that does not need to be the 

case. In fact, I would be happier if half had been negative. A positive residual means that 

the winner won by more than we expected. For example, the Vikings against the Packers 



had an expected logit of , implying the Vikings should lose by a little. They actually 

lost by a lot to giving an observed logit of ln. Had the Vikings 

managed to score 23 points, the logit then would have been ln and the logit 

residual would have been positive, . They still would have lost but 

had the moral victory of achieving a positive residual. A moral victory means they 

exceeded expectations, but positive residuals don’t win contract extensions for coaches. 

We haven’t tried to predict the actual scores, just the log of the ratios of the points. There 

are many scores that would give the same ratio; we have just shown one. The assumption 

of the last paragraph was that the Packers would score exactly 24. We could just as well 

assume that there would be a total of 10 + 24 = 34 points scored. Then the Vikings 

should, in theory, score 16.6 and the Packers 17.4. 

Any other positive integer would be just as defensible2 but these two approaches give the 

appearance of having some basis in reality. To get the expected Viking score in the first 

case, we need to solve expXand in the second, we solved expXX. 

All these fun and games with logits have a point, which is to suggest another approach to 

doing the arithmetic for spotting funny outcomes; i.e., discrepancies between the 

observed and expected points. The table below scores the results for the eleven play-off 

games. For these calculations, we fixed the total points scored as the sum of the points 

scored by the team and its opponent and used the logits to apportion the points between 

the two teams.  

Fifth Table: “Chi-squared” Values for Points Scored in Games Actually Played 

Team Logit Obs Exp 2 Opp Logit Obs Exp 2 Sum "t" T* 

Ravens 0.11 28 16.3 8 NE 0.53 13 24.7 6 14 7 14.4 

Ravens 0.11 34 24.5 4 SF 0.61 31 40.5 2 6 5 6.1 

Vikings 0.25 10 16.6 3 GB 0.30 24 17.4 2 5 4 5.0 

Ravens 0.11 38 29.1 3 Den 0.52 35 43.9 2 5 4 4.5 

Ravens 0.11 24 19.1 1 Ind -0.21 9 13.9 2 3 3 2.7 

Bengals 0.22 13 15.9 1 Hou 0.23 19 16.1 1 1 0 -0.1 

Falcons 0.52 30 28.1 0 Sea 0.58 28 29.9 0 0 0 0.0 

Patriots 0.53 41 39.6 0 Hou 0.23 28 29.4 0 0 0 -0.1 
Packers 0.30 31 32.2 0 SF 0.61 45 43.8 0 0 0 -0.1 
Falcons 0.52 24 24.8 0 SF 0.61 28 27.2 0 0 0 0.0 

Washington 0.09 14 14.4 0 Sea 0.58 24 23.6 0 0 1 -0.1 

The basic calculation for “expected” points is based on the expression we just used, 

expXX , rearranged as: 
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That’s not as mysterious as it looks: add the points scored by both teams together; divide 

by e raised to the power of the difference in logits plus one. For the Vikings and Packers, 

                                                 
2 Not quite any positive integer. In American football, you can’t score just one. But if the Packers could 

score one, the Vikings would be expected to score exp(-0.05) = 0.95.  That’s what odds (0.95 to 1) and log 

odds, i.e., logits, (-0.05) mean in this world. 



it’s 10+24 = 34 over exp(0.3 – 0.25) +1 = 2.05 for the Vikings and exp(0.25 -0.3) + 1 = 

1.95 for the Packers. The Vikings get 34 / 2.05 = 16.6 of the 34 points scored and the 

Packers get 34 / 1.95 = 17.4. Or that’s the way it was supposed to work. 

The columns I have labeled  are labeled that because the algebra looks like the standard 

form for a goodness-of-fit: 
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The column labeled Sum is the sum of the two . Everything in these columns has been 

rounded to integers because any decimals would imply more confidence in the numbers 

than I feel or professional sports warrants. 

After all this, it didn’t matter if we used the pseudo-t (penultimate column of the fifth 

table, copied from the fourth table) or the pseudo-(antepenultimate column); we would 

reach the same conclusions. Where it matters (i.e., with the large numbers), results are 

indistinguishable given appropriate choices for what defines a large number. Four of the 

five largest numbers involve the Ravens and the third largest in either metric is the 

Packers-Viking score. I can make the numbers, not just the conclusions, match in this 

example by translating the t-values with: 

55. T* =t (t – 1) / 3. 

This is the basis for the figure below. The small values don’t matter much because they 

don’t imply any surprise and any fluctuations are due to being restricted to points coming 

in clusters, or at least quanta. 

  
First Figure: “Chi-squared” Values and Translated “t” Values 

Slicing and Dicing the Pair Matrix 

Any of the approaches to model control we have been describing yield a statistic that 

quantifies our degree of surprise for each item pair (expressions 44, 47, and 48). We have 

at least three LxL matrices of surprise. We can then add up the rows or columns to see if 

our surprise attaches to one or more items across the board. We can in fact take slices 
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bigger than a single row across the matrices to ask if the surprise attaches to items of a 

particular difficulty range, type, content, format, type-face, source, age, etc.  

The nij can be diced on the person dimension, within the cells. When building the 

matrices containing the pairwise counts of examinees that passed one item and failed the 

other, we paid no attention to anything about the examinees, looking simply at pairs of 

items, one examinee’s response string at a time. When Specific Objectivity holds, all 

attributes of the examinees (including their abilities) are irrelevant. We mustn’t take this 

on faith and should verify that it is in fact the case. Then a Pair R-matrix using, say, just 

the boys should look just like the total matrix, which should look just like the expected 

matrix that we constructed from the difficulty estimates based on the row averages. The 

counts of course will be lower for the partial group, more cells may be empty, the degrees 

of freedom may be lower, and everything subject to statistical variability, but the logic is 

exactly the same as the contingency table analyses just described for the total matrix. We 

now have multiple versions of the LxL matrices of counts and log odds, the versions 

defined by a level of some factor for the people, e.g., gender, ethnicity, ability, SES, LEP, 

age, grade, year, ad nauseum. All the same analyses can be done. 

Depending on how much data and time we have, and how much money the client has, we 

should continue slicing across facets of the items and dicing among factors for the people 

that might be dangerous, problematic, or just interesting. The questions are only limited 

by our imagination, paranoia, and information available. 

 


