
One Student per Group 

The discussion thus far begs the question of what the right number of ability groups is and there 

is no one right answer. The proper number is somewhat arbitrary but the choice can affect what 

the data reveal. Perhaps there should be as many as your data and software will tolerate. The 

examples above have used eight, which is a common choice. Had we used only four, the curious 

and rather messy GOK pattern in Figure 1f would have been completely concealed. We have no 

way of knowing how the pattern and our interpretation might change if 12 groups were used 

instead. With a fixed form, we could go all the way to one group for each raw score, but that runs 

into problems with minimum group size for the goodness-of-fit purists.  

This leads one to ponder what if we go to the absolute limit and use groups of size one1. This is 

more or less where we started with: 
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We can build any number of things out of these basic elements starting with a couple rather 

global indices of the item’s behavior. Historically we started by squaring and averaging the zvi 

over the examinees:2 
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As suggested earlier, this is the average Odds against the Observed outcome because y is either -

p or 1-p. If the result is “near enough” to one, we have, in language only a statistician could love, 

no reason not to believe there is no problem with the item3. In other words, we are willing 

grudgingly to admit the item into our bank tentatively. If the result is not “near enough” to one, 

there are some unlikely events in the data. At the atomic level, there are only two kinds of 

unlikely events: 

 able person misses an easy item, or 

 unable person passes a hard item. 

If either of these happen, the observed x is far from the expected p and z2 becomes large quickly 

(because x – p is large and p(1 – p) is small.) Given the nature of items and examinees, this often 

isn’t enough to make us want to discard the item but it should get our attention.  

Wright proposed a weighted average as an alternative to muffle some alarm bells. 

                                                 
1 This is something of an end run around the sample size issue but we didn’t really believe the chi-square rationale 

anyway. 

2 To justify my notation, T is for total; in contrast, G is for group. 

3 Being a statistician means never having to say you’re certain. I credit this to Robert Lissitz but everything of 

importance has been said before by someone who didn’t discover it (Alfred Lord Whitehead.) 
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This effectively returns to the y-metric, which is less volatile than the z-metric, but has been 

likened to shooting the messenger. There will be fewer false alarms but an increased risk of 

overlooking a legitimate issue. And it loses its natural interpretation as odds. The distinction 

between the two diminishes with well targeted tests. Smith and Smith (2003) refer to T* as the 

“weighted mean square” and, by contrast, to T as “unweighted.” Wright, with his penchant for 

the well-turned phrase, uses “Infit” for T* and “Outfit” for T (Linacre, 2014). 

Both T and T* are very global indicators of item acceptability. They can sound the alarm but 

don’t help much with the explanation and may miss some interesting details. Understanding what 

happened means understanding what the item really requires (not just what the item writers 

thought it requires) and which examinees surprisingly missed or passed it. This brings us full 

circle to wanting to form groups of people and clusters of items. 

Clusters and Groups: L Items, N People, One Array 

Our focus is still on dichotomously scored items, i.e., 1 or 0; our data is still a bunch of people 

responding to a bunch of items; we have been calling any one of the observations xvi for person v 

and item i. We also have a model that gives us an expected value for xvi, which we have been 

calling pvi, defined as the probability that the person will pass the item and may be written as pvi 

= . We can subtract the later from the former to get a residual yvi. Because the 

observed data are dichotomous, the simple residuals are either (1 pvi) or pvi, which (unsigned) 

is the probability against the observed result. We might as well throw in the standardized 

residual zvi squared, which is either (i / v) or (v/ i)., which is the odds against the observed.

With a total of N people in our group taking L items4, the observed data or the expected data or 

the difference between or all of the above can be arranged in arrays with N rows and L columns. 

Because N times L can be a large number, there will also certainly be by chance large values for 

some of the yvi, but there should be no discernible patterns in the array. 

We can (and probably should) ask the computer to discover any structure by running an 

exploratory technique like Principle Components Analysis (PCA) etc., but that leaves the analyst 

with the task of naming the components the computer discovered, which most of us are 

remarkably adept at. The analysis is more powerful and more convincing and more difficult if we 

identify beforehand where the structure might be. This is asking what characteristics of the 

person and the item might interact to disrupt the measurement. PCA is insurance against our lack 

of imagination and insight. 

Table 4-3 is an attempt to show the N by L array. It also has an example partitioning with six 

clusters of items (by columns) and 12 groups of examinees (by rows) in a 2 by 3 by 2 design on 

three factors. Within each cell, there are as many examinees as fit the classification, each 

responding to each item in the cluster. 

                                                 
4 We are assuming for the moment a fixed form of L items taken by all N examinees, although that is rarely the 

psychometrically optimal strategy. 



  



Table 4-3: N by L Residual Analysis Array 
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Assuming we are dealing with the entire universe (i.e., the N examinees were used to estimate 

the item difficulties and the L items were used to estimate the person abilities,) the residual yvi = 

xvi - pvi will sum to zero when added over any row, any column, and of course the entire array. If 

Specific Objectivity obtains, every sub-array will sum to zero statistically. “Sum to zero 

statistically” means it is not constrained to be zero, unlike the total array, but should be within 

statistical limits of zero. 

We can split the array in half, as we have earlier, by gender. If we add up all the males and add 

up all the females, each sum should be statistically zero and we have no evidence of a gender 

effect on the estimation. But because of the way the estimation is done, one of the sums will be 

positive and one negative; we just hope not too positive or too negative. If the sums are too large, 

it doesn’t exactly mean that the test is biased against one gender and biased for the other; just 

that there is a difference. The effect could be due, for example, to confounding with some other 

factor, observed or not. 

We can continue partitioning the array until we exhaust our data or ourselves. For example, we 

could split the gender groups by ethnicity, and again by ability ranges. The items could be split 

by difficulty, sequence, content. This is a process like the Analysis of Variance. We are sorting 

through the higher order interactions, lower order interactions, and main effects looking for the 

simplest (and not one bit simpler) explanation of the results. We don’t want to find even main 

effects in the residuals but if they are there, we want to know about it.  

Perhaps, Analysis of Covariance is a better analogy because we have adjusted for the model 

parameters as best we can. Comparisons of the residual sums 

within sub-arrays should all begin with the phrase, after controlling 

for ability and difficulty… This is another way of saying local 

independence. 

The discussion thus far has been primarily on summing and averaging the y-residual within sub-

arrays. The y metric, while having its limitations, is readily understood and communicated. Each 

sub-array average is the change in p-value for that portion of the universe. The major limitation 

is that surprising right answers can cancel out surprising wrong answers. This sends us back to 

Each sub-array average 

yvi is the change in p-

value for that portion of 

the universe. 



what statisticians have done since Fisher and Snedecor: square, sum, and divide by the error 

term. 

The analysis of Rasch residuals has one great advantage over the typical Analysis of Variance: 

we know the within cell error vi
pvipvi ) in theory. More accurately, we only have an 

estimate of the within-cell error but it comes from the model, not the pooled within-cell mean 

square. And there is one great disadvantage or at least inconvenience in our context: the within-

cell error is not homogeneous. 

Rasch residual analysis lets us practice the four basic operations of arithmetic: 

 Subtraction: fill the person-by-item array with the differences between the observed and 

the expected. 

 Addition: sum within the appropriate sub-array. 

 Multiplication: multiply by itself; i.e., square. 

 Division: divide by error term; i.e., square root of the sum of pq. 

Today, you can do these operations on your phone. We will always start with the subtraction but 

the order of the other three determines what we get so, if you had something else on your mind in 

junior high, you might review two fundamental laws of binary operators: 

 Associative: 

 Commutative: 

That’s about all the math you need to know here; the rest is just fighting through the notation. 

Group Mean Square for Group g, Cluster c:  

59. 




 

 












gv ci

vi

gv ci

vi

gc
w

y

G

2

, 

).1(

)1(

)1(

vivivi

vivivi

vivivi

yyw

yyw

ppw







  

 

This dates back to Wright and Panchapekesan (1969) and is logically identical to Ggi of 

expression 62; only the summations have been changed. It would be zero (nearly) if summed 

over an entire row, column, or the array. It will be large for a cell if the surprises tend to be in the 

same direction, either too many right or too many wrong. Surprises in both directions will tend to 

cancel out. It is sensitive to the interaction of a group of people with a cluster of items; it will be 

large if the group g of people experienced cluster c of items differently than everyone else. The 

fundamental question is, Do the global estimates of parameters correctly predict the observed 

mean p-value of this cluster of items for this group of people?  

Unweighted Mean Square (Outfit) for Group g, Cluster c: 
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This would be Ti = Outfit for an item if summed over one entire column or for a person if 

summed over one entire row. It includes a within-cell variance component and will be large 

if yvi < 0, or  

if yvi > 0. 



when the cell contains surprises in either or both directions. Surprises in opposite directions will 

not cancel. This form is very sensitive to able examinees missing easy items or unable examinees 

passing difficult items, but we should try to avoid administering those items in the first place. 

Weighted Mean Square (Infit) for Group g, Cluster c:  
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This is Ti
* = Infit for an item if summed over one column or Tv

* for a person if summed over one 

row. It includes the variance within a cell and will be large when the cell contains surprises in 

either or both directions. Surprises in opposite directions will not cancel. This form is only 

moderately sensitive to able examinees missing very easy items or unable examinees passing 

very difficult items, but we should try to avoid administering those items in the first place. 

Model Control Displays 

Any and all of the three indicators Ggc, T*gc, and Tgc could be displayed as the summary statistic 

in its group-by-cluster cell of Table 4-3. When presenting the information to educators and 

feeling especially hospitable, I prefer to show: 
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This retains the plus or minus sign and can be interpreted as the difference in the p-value that 

was observed for this group on this cluster compared to the value expected.  

If I am feeling less hospitable or presenting to psychometricians, I would show: 
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While P'gc is interpreted as the change in p-value for the cell, D'gc is interpreted as the change in 

logit item difficulty. This also retains a plus or minus sign although reversed from Pgc. While the 

interpretation is easy enough, the explanation of the interpretation is more abstruse. The 

numerator, yvi = xvipvi, set equal to zero, is the marginal maximum likelihood 

estimation equation for item difficulty; the denominator is the second derivative of the log 

likelihood function. Ergo, D'gc is the first correction in the estimation process, using Newton’s 

method, for the logit difficulties needed to “fit” the observed data in the cell.  

The minus sign in front comes with the second derivative, implying we have a maximum, not a 

minimum. More functionally, it makes the change in logit difficulty go in the opposite direction 

as the p-value. If the p-value goes up, the item cluster is easier than expected and the logit 

difficulty should go down. 

Regardless of which summary indicator is displayed in the cell, any or all could be used to set 

flags, with colors, fonts, stars, bells, pop-ups, or text messages, to submit the cell for our 



consideration. Our work understanding what happened for a cell begins once the computer has 

our attention. 

Moving to a Higher Level 

The partitioning of the N by L examinee-item array used as our example in Table 4-3 gives a 

total of 72 cells. This is a manageable number to inspect manually, if intelligent, automated flags 

ensure we don’t miss anything interesting. When you wish to focus on particular factors, you can 

readily sum over the other factors for any of the three indicators. For example, to obtain an 

indicator for an item cluster across all groups of examinees, compute: 
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It is probably defensible to treat this as a chi-square statistic with degrees of freedom equal to the 

number of terms in the summation over g. Tgc*, Tgc, and Ggc for any cell should each have about 

one degree of freedom. 

Rather than sum the unwanted factors away (expression 75), it may be preferable, and about as 

easy, to redefine the partitioning to include the item clusters and a single, all-inclusive examinee 

group. This reverts to reduced versions of expressions 70, 71, and 72. In most cases with 

approximately equal cell sizes, the two strategies will lead to the same conclusions if not the 

same result. If the cells differ dramatically in the numbers of examinees, the small cells will be 

overly weighted in expression 75. 

Build to Break 

What experiment could disprove your hypothesis? John Platt 

All models I will consider here require a single one-dimensional construct5, for which all items 

are, presumed, equally valid and reliable. The obvious, simple, logical strategy to meet this 

requirement is to construct instruments with very homogeneous items and administer them to 

carefully screened examinees. Like most obvious, simple, logical solutions, this isn’t the answer.  

I was once a small part of a study6 using an instrument for spatial reasoning. The instrument 

consisted of number series completion problems, for example, 1, 1, 2, 3, 5, … What number is 

next? Almost everyone in the group agreed that the best strategy is to keep taking successive 

differences until the rule became obvious and then apply it to find the next in the series. A small 

group of examinees, who were the highest scoring, thought that was ridiculous and that you did it 

by counting down the series and listening for the right number to come around. This high scoring 

block was the drummers and music teachers in the group. Because the homogeneous items were 

so strictly one-dimensional, they could not discriminate between spatial reasoning proficiency 

and rhythm.  

The best protection against extraneous traits in the examinees is, don’t put all your item eggs in 

one basket. Spatial reasoning is surely more than just completing number sequences. Find 

another consequence of being high or low on the trait and devise items that reveal behaviors 

determined by that consequence. Instruments should be constructed with multiple approaches to 

revealing the aspect so that we can be certain that high scores truly reflect high ability on the 

                                                 
5 Not everyone inhabits the same world I do. See Wilson et al (2003). 
6 Everyone in this activity was a graduate student in measurement. 



construct and not proficiency as a percussionist. Or maybe you don’t have a spatial reasoning test 

but an admissions test for Pete Best’s School for Drummers. 

There is a corollary for the examinees that is almost too obvious to mention. When developing 

items for use with a general population, don’t limit your try-outs to first-born, 11-year-old, sixth-

grade males of European ancestry.  Person-freed item calibration doesn’t mean we are free to 

design bad studies. 

Cleansing items, censoring people, getting to the bottom of things 

At this point, our objective is to identify problematic items, fix them if we can, dispose of them if 

we can’t. Understanding people is secondary; that comes later. It is tempting as innocents abroad 

in measurement to compute a global version of an unweighted mean square, like  
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use the F-distribution, with degrees of freedom of (N x L) and the largest number your software 

will allow, to establish a reasonable significance level, and, if not significant enough, blithely 

proceed on our way believing everything is fine.  

That’s going a little too global a little too fast for my taste. Let’s begin at the level of the items 

with the item version of the unweighted mean square (a.k.a., Outfit) to establish the significance 

level for each item. 

66. 



N

v

vii z
N

T
1

21
, with degrees of freedom (N-1, ∞)7 

We are now at the stage of sorting the items into four buckets: those we like, those we will live 

with, those we can salvage, and those we are embarrassed we ever considered in the first place. 

The criteria for defining the buckets are arbitrary, analogous to measuring with a piece of elastic 

and cutting with a sharp knife. They usually depend more on resources, economics, schedules, 

and politics than science and statistics.  

I tend to use the unweighted mean square to set the significance level8, but want to see 

everything before deciding what the buckets mean, which items are salvageable and which are 

embarrassing. Everything in this sentence means unweighted Ti, weighted T*i, several group Gi 

mean squares, and the changes in p-value P'i and logit difficulty D'i. by group and cluster. Most 

are highly, but not perfectly correlated and perhaps not linearly9. An item’s global statistics 

(those with just the i subscript) are useful for flagging items, but any diagnosis and 

understanding looking at more finer detail, i.e., things that require two or more subscripts.  

                                                 
7 The degrees of freedom for the denominator of the F-ratio are infinitely large because the model gave the error 

mean square, i.e., s2 = p(1-p). Typically, the numbers are so big it doesn’t matter if we use N or N-1 and ∞, 1010, 

105 or something in between. Whether this is the exact distribution or not, it is place to start. 
8 This may not be all that surprising; considering experiences in my formative years (Mead, 1976), although I didn’t 

say unweighted or Outfit because the weighted mean square and Infit  weren’t even a gleam in Ben’s eye at that 

time. 
9 The point biserial correlation can be thrown into this mix if you are that old school. I also include foil analyses, 

with the count, point biserial, and mean logit difficulty for each foil. It is always useful to know which distracters 

were popular and with whom. 



Beginning with the items with the most disturbing values, examine them from every angle and 

keep reviewing, revising, and rejecting until you are chasing noise, the item pool is depleted, or 

the client runs out of money. 

The choice of a favorite strategy may be based on unpleasant experiences from your youth or it 

may be based on deeply-held philosophical principles. My deeply-held philosophical principles 

are: 

 Some notion of what might go wrong is more important than how you do the arithmetic.  

 Contemplation of raw observations with an empty mind, even when it is possible, is often 

hardly more beneficial than not studying them at all.  (Martin Wilk) 

 If your data have something to tell you, your statistics won’t stop them. (G. Box) 

 No single fit statistic is either necessary or sufficient. (David Andrich).  

 


