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Viiic: More than One; Less than Infinity 

For many testing situations, simple zero-one scoring is not enough and Poisson-type counts are 

too much. Polytomous Rasch models (PRM) cover the middle ground between one and infinity 

and allow scored responses from zero to a maximum of some small integer m. The integer scores 

must be ordered in the obvious way so that responding in category k implies more of the trait 

than responding in category k-1. While the scores must be consecutive integers, there is no 

requirement that the categories be equally spaced; that is something we can estimate just like 

ordinary item difficulties.  

Once we admit the possibility of unequal spacing of categories, we almost immediately run into 

the issue, Can the thresholds (i.e., boundaries between categories) be disordered? To harken back 

to the baseball discussion, a four-base hit counts for more than a three-base hit, but four-bases 

are three or four times more frequent than three-bases. This begs an important question about 

whether we are observing the same aspect with three- and four-base hits, or with underused 

categories in general; we’ll come back to it. 

To continue the archery metaphor, we now have a number, call it m, of concentric circles rather 

than just a single bull’s-eye with more points given for hitting within smaller circles. The case of 

m=1 is the dichotomous model and m→ is the Poisson, both of which can be derived as 

limiting cases of almost any of the models that follow. The Poisson might apply in archery if 

scoring were based on the distance from the center rather than which one of a few circles was hit; 

distance from the center (in, say, millimeters) is the same as an infinite number of rings, if you 

can read your ruler that precisely. 

Rating scale model (RSM) 

The rating scale model (Andrich, 1978; Wright & Masters, 1982) characterizes the person’s 

responses as a simple function of the person’s condition (e.g., attitude, preference, status, level of 

pain, ability), the item’s strength, and several levels up or down for the response categories. The 

model is used more frequently for attitude, preference, or evaluation questionnaires than 

achievement testing. One common format is a series of statements that the respondent is asked to 

react to on, say, a five-point scale from “strongly disagree” to “strongly agree”. 

If we are considering, for example, the statement:  

“The Rasch model is the very definition of measurement” 

and the response format is: 

Strongly Disagree Disagree Don’t Care Agree  Strongly Agree 

and we intend to respond either in category “agree” or category “strongly agree”, the probability 

of choosing “strongly agree” over “agree” is: 
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where response category k is “strongly agree” and p(k) is the unconditional probability of 

responding in category k, which we have not yet revealed. Because, at this point, we are 

considering only two categories, expression (13) is identical to the dichotomous case with the 
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item difficulty replaced by. The categories other than k and k-1 do not enter into the 

equation. 

The distinction between p and p* is that p is the probability of responding “strongly agree” 

without restriction but p* is the probability of “strongly agree”, given the response is either 

“agree” or “strongly agree”. We have, in effect, already dismissed the less positive responses 

from our consideration. It may help some to say that, ∑ 𝑝𝑥
𝑚
𝑥=0 = 1 and ∑ 𝑝𝑥

∗𝑘
𝑥=𝑘−1 = 1. 

Apply a little algebra to expression (13) and we have a recursive expression for p(k): 
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Significantly, the likelihood of moving from (k-1) to (k) involves only the parameter for (k) and 

none of the others. It does not matter hard it was to get to (k-1) or how easy it might be to get 

beyond (k). 

Equivalent and sometimes more convenient than (14), the log odds of k versus k-1 (i.e., logit): 
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Once again the logit is the log odds of one outcome versus the other. 

While we now have an expression for p(k), we need a starting point. It is convenient, and no 

more arbitrary than any other value, to define the logit for category 0 as 0, and then the 

probabilities can be developed as in Table 31.  

Table 3: Response Category Probabilities for a Rating Scale Model 
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Total 𝑚(𝛽 − 𝛿) − ∑𝜏  1.0 

For the sake of completeness and the compulsively mathematical, the relationships of Table 3 

can be captured in the standard expression of the rating scale model for the probability that 

person taking item i will respond in category k, given the person parameter , the item 

parameter i, and m category parameters j: 

                                                 
1 The  term in Table 3 is a normalizing constant to make the probabilities sum to one. It is nothing more or less than 

the sum of the numerators. If we were being more rigorous, a form of this constant would be introduced in 

expressions (12) and (13). 
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The summation in the exponent represents the summing of logits in Table 3; the summation in 

the denominator is the summing of the numerators, the numerator of k=0 being one. This is the p 

needed for expressions 13 to 15. 

Figure 2 shows the Category Characteristic Curves (colors) for a five-category item with nicely 

spaced categories. The category parameters used to create the plot are (-3, -1, 1, 3). These 

parameters appear in the figure as the intersections between adjacent categories. The curves for 

category Fail and category Marginal cross at -3; the curves for category Marginal and category 

Pass cross at -1; etc. The only intersections that matter are those for adjacent categories. Items 

never look like this in real life. 

  
Figure 2: Rating Scale with Four Equally Spaced thresholds: parameters = (-3, -1, 1, 3) 

The lighter gray curves are Threshold Characteristic Curves that show the probability of being in 

the higher of two adjacent categories. These look just like the Item Characteristic Curves (ICC) 

we are familiar with for dichotomous items because that is what they are: the probability of being 

in category k rather than k-1. They will always cross 0.5 on the vertical axis at threshold value on 

the horizontal. In the language of expression (13), these are the p*; the more colorful Category 

Curves are the p’s. As required by (13), p* is always above p. 

A person in category k is not described adquately by the category parameter.  For this example, 

although  is -1.0, the most likely value for a person’s location, given an observed category of 2, 

is a logit of 0.0. Because of the symmetry of this example, this estimate happens to be half-way 

between adjacent threshold values. 

Table 4 illustrates some of the calculations behind Figure 2; specifically, the calculations needed 

for a point on each curve where i. Column 1 is the category score k. Column 2 is the 

threshold parameter ; as with the dichotomous case that had two categories and one parameter, 

there is one fewer threshold than categories. The third column, exp(i) = exp(1), is 

the exponentiation at the point on the logit continuum where the person parameter exceeds the 
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item parameter by one logit. The Numerator is the exponentiation times the previous numerator. 

The Probability is the Numerator divided by the sum of the numerators. This is a repeat of Table 

3 with numbers instead of symbols. 

Table 4: Category probabilities for  and = (-3, -1, 1, 3). 

Category Logit exp(1) Numerator Probability 

0   1 0.001 

1 -3 54.60 54.60 0.060 

2 -1 7.39 403.43 0.440 

3 1 1.00 403.43 0.440 

4 3 0.14 54.60 0.060 

Sum   917.06 1.000 

 

Partial credit model (PCM) 

The Partial Credit model (Masters, 1980; Wright & Masters, 1982) looks almost identical to the 

rating scale model. When looking at a single item, the models are indistinguishable. There is 

nothing about Figure 2 that says rating scale, not partial credit. Tables 3 and 4 can be used here 

just as well if an i is added to the subscript of each j. If we continue to belabor the archery 

metaphor, in addition to concentric circles of different sizes, different targets may use different 

numbers or patterns for the concentric circles. 

Based on the original rationalization of partial credit scoring, the category parameters are 

typically referred to as steps. This is the point on the continuum where the person has completed 

one step in the problem solution, receives credit for that work, and begins work on the next step. 

As with the rating scale formulation, this is the point on the scale at which the two adjacent 

categories are equally likely. We will follow Andrich and refer to the category parameters as 

thresholds. 

For the mathematically inclined, the partial credit model for the probability of person  

responding in category k on item i, given the person parameter  and the mi item parameters 

ijiij, may be written as: 
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The distinction between the rating scale model (16) and the partial credit model (17) is that the 

category parameters, j, have now been subsumed under the item parameters ij. The practical 

implication of this change is that the response categories can differ across items; they can be 

different formats or have different numbers of categories. For attitude or preference 

questionnaires, this may mean that different response categories are used for each statement 

(e.g., agree-disagree versus never-always; four-point scales versus five-point). For achievement 

testing, it may mean zero points are given for completely wrong answers, mi points are given for 

completely right answers, and integer scores between zero and mi are given for partially correct 

answers according to the item rubric, with the maximum points mi and the scoring rubric for the 

partial credit specific to each item. 
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It is a matter of style or context whether the partial credit model is written in terms of ijor iij. 

The first form implies the item is best described by the mi threshold values; then ij   looks 

like an extension of the dichotomous case. The second form implies the item can be described by 

a single location with the thresholds given as offsets around that; then  iji    looks like a 

generalization of the rating scale model. While it doesn’t much matter which version, ij or ij, of 

the thresholds you use, it is useful to know which one your software gave you. 

 


