
VII. Rules of Thumb, Shortcuts, Loose Ends, and Other Off-Topic Topics: 

Significant Relationships in the Life of a Psychometrician 

Unless you can prove your approximation is as good as my exact solution, I am 

not interested in your approximation. R. Daryl Bock1 

Unless you can show me your exact solution is better than my approximation, I 

am not interested in your exact solution. Benjamin D. Wright2 

Rule of Thumb Estimates for Rasch Standard Errors 

The asymptotic standard error for Marginal Maximum Likelihood estimates of the Rasch 

difficulty  or ability  parameters is: 
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The summation is over the N people in the sample for the standard error of calibration for 

an item or over the L items on the test for the standard error of measurement of a person. A 

plot of this function is bowl-shaped with a rather wide, rather flat bottom. This should be 

used whenever reporting results and measures. For purposes of planning, there’s a quick 

and dirty way. 

Rule of Thumb 

The basic formula for the standard error (Wright and Stone, 1979) adequate for 

comparing test lengths or determining sample size for purposes of design and 

development is: 
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 , k = N, the number of people, for the standard error of dx, or 

k = L, the number of test items, for the standard error of bx.  

Examples 

A reasonably typical value for the standard error of measurement for, say, a 60-item test 

is: 
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If you have a six-item subtest and the developers or marketing staff want to report the 

scores, they should first be told that the typical standard error for that score is: 

4. 02.1
6

5.2
bse logits. 

Basis of the Rule 

                                                 
1 I first applied to the University of Chicago because Prof. Bock was there. 
2 There was a reason I ended up working with Prof. Wright. 



If every item is of equal difficulty and exactly on target for a person, then p = 0.5 and 

equation 1 for b becomes: 
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Because not all items are of equal difficulty and not all tests are perfectly targeted, 

expression 5 is an unreachable lower limit.  

If the probability for every item is 0.9 rather than 0.5, the numerator will be 1/√[(0.9)(0.1)] 

= 3.33 rather than 2. The value of 2.5 in expression 2 is a middling value that reflects the 

situation that most items are fairly well, but far from perfectly, targeted for most people.  

One of the advances Rasch brings over traditional true score theory is that the standard 

error isn’t a one-size-all answer but a function of the number correct score; this rule of 

thumb doesn’t seen to fit with that philosophy. It is intended for planning and design 

purposes, not for final reporting. The rule of thumb works better for longer tests than for 

shorter.  

Analogous arguments can be used to make an informed guess at the standard error for 

estimated difficulty by replacing L with N throughout.  

Rule of Thumb Estimate for Test Reliability 

The traditional notion of test reliability might be defined as the ratio of the true score 

variance t
2 to the total varianceT

2. The total variance is the true score variance plus the 

error variance e
2. 
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This whole idea has to do with how consistently the instrument orders some population of 

examinees rather than how precisely any one examinee’s score is estimated. It may still 

be relevant in the norm referenced world if you want to go there. It has nothing to do with 

Rasch measurement. But sometimes people ask. 

Rule of Thumb 

The basic formula for estimating the reliability of a proposed test design that you can do 

in your head or on cocktail napkins is: 
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r , where L is the number of test items. 

This assumes items of typical quality. The expression can, of course, be turned around to 

give the test length needed for a given reliability. 
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Example 

If we have the time and money to administer a 60-item test, we can expect a reliability of 

60 / 66 = 0.91. For the hypothetical six-item subtest, the reliability could be 6 / 12 = 0.5.  



If the contract requires a test reliability of 0.85, as suggested by many powers that be, the 

test length required is 6(0.85 / 0.15) = 34. I’d throw in a few more just to be safe. 

Basis of the Rule 

Experience with the logit metric native to the Rasch measurement model has suggested 

that the typical within grade variance is about one logit, over a variety of grades, content 

areas, and assessments. Using this an estimate of the unknown true score variance, 

expression 2 provides a rule of thumb for the error variance. Substituting these values 

into expression 5 gives: 
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Using 6.25 = 2.52 instead 6.0 makes expression 2 into 2.45 rather than 2.5 and would 

imply a reliability of 0.9091 rather than 0.9057 for a test length of 60 items. This is 

beyond the accuracy of the assumption that the unknown variance equals one and beyond 

the credibility of the reasoning that led to the value of 2.5 in the first place. The rule of 

thumb works better for longer tests than for shorter and it may well change when we 

write better items. We’d learn to live with it. 

Rule of Thumb Estimate of Standard Errors of Measurement from Raw-to-Logit 

Conversion Table 

No respectable statistic would be seen in public without its standard error but not 

everyone involved in educational measurement appreciates this decree. It is not 

uncommon to see tables like the following intended to be used to look up scale scores 

given a number correct score on a fixed form. 

Unbeknownst to the system analysts who created the table, the standard errors of 

measurement are embedded.3 

Rule of Thumb 

A rule of thumb for retrieving the standard error of measurement for the logit ability br 

from a raw-to-scale score conversion table is: 

10. SEM(br) = 
2

11   rr bb
. 

The calculation needs to be done in logits but while we’re here, the standard error of 

measurement SEM(Gr) in the GRit metric is SEM(br) multiplied by the scaling factor used 

to convert logit scores to GRits; in our example, that’s 91. 

Example 

The standard error of measurement associated with a score of 10 for the table below is: 

                                                 
3 The GRit scores, in this example, are a linear transformation of the logit score equal to 91(logit) + 600. I 

have included them here, not because I need them, but because this type of table is generally created to look 

up scale scores for reporting. I will continue to think in logits as long as I can. 



SEM10 = √{[0.2695 – (-0.2695)]/2} = 0.52. 

The short cut of the preceding section would give 2.5/√20 =0.56 for a 20-item test but the 

center of a test (e.g., around 10 out of 20) will generally be lower.  

Table 1: Raw-to-Scale Conversion Table 20-Item Fixed Form; No Standard Errors 

Number 
Correct 

Percent 
Correct 

Logit 
Ability 

GRit 
Score 

0 0% -4.8180 161.6 

1 5% -3.5363 278.2 

2 10% -2.7283 351.7 

3 15% -2.2032 399.5 

4 20% -1.7909 437.0 

5 25% -1.4379 469.2 

6 30% -1.1201 498.1 

7 35% -0.8245 525.0 

8 40% -0.5428 550.6 

9 45% -0.2695 575.5 

10 50% 0.0000 600.0 

11 55% 0.2695 624.5 

12 60% 0.5428 649.4 

13 65% 0.8245 675.0 

14 70% 1.1201 701.9 

15 75% 1.4379 730.8 

16 80% 1.7909 763.0 

17 85% 2.2032 800.5 

18 90% 2.7283 848.3 

19 95% 3.5363 921.8 

20 100% 4.8180 1038.4 

Basis of the Rule 

The Newton method iteration for estimating the logit ability for a raw score of r is: 
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 , where k is the previous iteration, and 

pri is the expected score based on br
k. 

If we use a raw score of (x as our starting point for computing the logit ability for a 

score of x, then p(x-1)i will be equal to x-1 because b(x-1) is defined as the value satisfying 

the equation (x p(x-1)i = 0. In this case, equation 11 becomes: 
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The square root of expression 13 was defined in expression 1 as the standard error of 

estimation. 

The rule of thumb in expression 9 averaged the distances to the two scores adjacent to r, 

[(br+1 – br) + (br – br-1)] / 2, to make the process a little more symmetric. Once again the 

approximation is weakest in the extremes. Depending on the convergence criterion, 

Newton’s Method would typically require two or three more iterations at the extreme 

scores even for nicely constructed tests like this. 

Longer Example 

We repeat half the table used above with the standard errors that should have been 

included included and our rule of thumb approximations for comparison. These tables 

tend to be more or less symmetric around L/2. 

Table 2: One Half of a Raw-to-Scale Conversion Table 
20-Item Fixed Form with Standard Errors 

Number 
Correct 

Logit 
Ability 

Logit 
Standard 

Error 

Rule of 
Thumb 
SEM 

Differ-
ence 

GRit 
Score 

GRit 
Std 

Error 

GRit 
Rule of 
Thumb 

Differ-
ence 

0 -4.8180 1.8554   161.6 169.8   

1 -3.5363 1.0548 1.0222 -0.0326 278.2 96.0 93.0 -3.0 

2 -2.7283 0.7856 0.8164 0.0308 351.7 71.5 74.3 2.8 

3 -2.2032 0.6749 0.6846 0.0097 399.5 61.4 62.3 0.6 

4 -1.7909 0.6142 0.6186 0.0044 437.0 55.9 56.3 0.4 

5 -1.4379 0.5767 0.5791 0.0024 469.2 52.5 52.7 0.2 

6 -1.1201 0.5523 0.5538 0.0015 498.1 50.3 50.4 0.1 

7 -0.8245 0.5362 0.5373 0.0011 525.0 48.8 48.9 0.1 

8 -0.5428 0.5260 0.5268 0.0008 550.6 47.9 47.9 0.1 

9 -0.2695 0.5203 0.5210 0.0007 575.5 47.3 47.4 0.1 

10 0.0000 0.5185 0.5191 0.0006 600.0 47.2 47.2 0.0 

We can also use this relationship to save a little time when computing MMLE estimates 

of ability. Typically, we use ln[r / (L – r)] as the starting value in the iterative process for 

each raw score r, which assumes the item difficulties are centered at zero. We can instead 

begin in the center for r = L/2 and br = 0; once we have that estimate and its standard 

error, we can move up one and down one score by adding (or subtracting) the standard 

error squared to the last estimate and use that as a starting value. This might save one 

round of iteration, but it’s cuter. 

Everything You Need To Know 

With the possible exceptions of programmers’ convenience, there is no reason to store 

four versions of the observation, xvi, pvi, yvi, and zvi. All we really need are the yvi; 

everything else can be reconstituted when and if we need them.  

The last line of the table goes a step further and deduces the difficulty of the item from 

the residual when we know the estimated ability for the person. This is most useful when 

examinees can take unique item sets. The relationship is turned around in the penultimate 

line to provide the ability given the difficulty. This exposes another vein to control the 

model that, to my knowledge, has not been either mined or bled. 



Table 3: Relationships of yvi with other statistics 

When … Incorrect Correct 

then yvi = xvi - pvi < 0 > 0 

Observed xvi 0 1 

Expected pvi  yvi  1  yvi 

Standardized zvi
2 yvi / (1  yvi) yvi / (1  yvi) 

Variance s2 yvi (1  yvi) yvi (1  yvi) 

Ability bv di  +  ln[( yvi)/(1+yvi)] di  +  ln[(1 yvi)/yvi] 

Difficulty di bv ln[( yvi)/(1+yvi)] bv ln[(1 yvi)/yvi] 

This entire topic may be residual paranoia from the era when storage was expensive. 

However, the N by L arrays can be large and it may be convenient, perhaps even prudent, 

not to have too many versions of the same information lying around. 

Alpha-Integer Scoring 

While we are in the business of minimizing storage space, there is one version of the 

observation that yvi does not capture. That is the actual response, typically A, B, C, or D 

for a multiple choice item. One common practice is to code the response with alphas (i.e., 

A, B, C, or D) when correct and integers (i.e., 1, 2, 3, or 4) when incorrect. Table 4 shows 

the internal representation for this coding, which suggests the rationale. 

Table 4: ASCII Codes for Alpha-Integer Coding. 

 Correct Incorrect 

Response Value Hex Binary Value Hex Binary 

A A 41 0100 0001 1 31 0011 0001 

B B 42 0100 0010 2 32 0011 0010 

C C 43 0100 0011 3 33 0011 0011 

D D 44 0100 0100 4 34 0011 0100 

The raw response is captured in the low order byte of the binary or hex code, which, 

whether correct or incorrect, are identical and can be manipulated as short integers. The 

scored response is captured in the second bit of the high order byte, which is 1 if correct 

and 0 if incorrect. If you are clever enough with bits, bytes, and masks, the zero/one 

scores can be deduced without resulting to IF statements. There are even trickier, more 

compact formats that might be devised, but modern, state-of-the-art system analysts don’t 

seem much concerned with saving storage space when stacked against the high from 

writing scrutable code. They may however be addicted to speed, or at least caffeine. 

First Principle 

I have now reported almost everything I know about the basic Rasch model; anything left 

out is a simple variation on the first principle and follows directly from something Georg 

Rasch had said by 1960. The first principle is that for any person, regardless of 

individualities or idiosyncrasies, the probability of success on any item, regardless of 

particularities or peculiarities, is controlled by the simple distance between the person’s 

ability and the item’s difficulty, v–i. That principle makes everything, from calibration 

to control to application, too simple to be scholarly.  

This is the ultimate Rasch shortcut. But revealing the aspect and defining the construct 

will still take real effort and premeditation. 


