
IX. Doing the Arithmetic Redux with Guttman Patterns 

Many posts ago, I asserted that doing the arithmetic to get estimates of item difficulties for 

dichotomous items is almost trivial. You don’t need to know anything about second derivatives, 

Newton’s method iterations, or convergence criterion. You do need to: 

1. Create an L x L matrix R = [rij], where L is the number of items.  

2. For each person, add a 1 to rij if item j is correct and i is incorrect; zero otherwise. 

3. Create an L x L matrix Y  = [yij] of log odds; i.e., yij = log(rij / rji) 

4. Calculate the row averages; di = yij / L.  

Done; the row average for row i is the logit difficulty of item i.  

That’s the idea but it’s a little too simplistic. Mathematically, step three won’t work if either rij or 

rji is zero; in one case, you can’t do the division and in the other, you can’t take the log. In the 

real world, this means everyone has to take the same set of items and every item has to be a 

winner and a loser in every pair. For reasonably large fixed form assessments, neither of these is 

an issue. 

Expressing step 4 in matrix speak, Ad = S, where A is an LxL diagonal matrix with L on the 

diagonal, d is the Lx1 vector of logit difficulties that we are after, and S is the Lx1 vector of row 

sums. Or d = A-1S, which is nothing more than the d are the row averages. 

R-code that probably works, assuming L, x, and data have been properly defined, and almost line 

for line what we just said: 

Block 1: Estimating Difficulties from a Complete Matrix of Counts R 

R = matrix (0, L, L)   # Define and zero an LxL matrix 

for ( x in data)    # Loop through people 

R = R + ((1x) %o% x)   # Outer product of vectors creates square 

Y = log (t(R) / R)    # Log Odds (ji) over (ij) 

d = rowMeans(Y)    # Find the row averages 

This probably requires some explanation. The object data contains the scored data with one row 

for each person. The vector x contains the zero-one scored response string for a person. The outer 

product, %o%, of x with its complement creates a square matrix with a rij = 1 when both xj and 

(1 xi) are one; zero otherwise. The log odds line we used here to define Y will always generate 

some errors as written because the diagonal of R will always be zero. It should have an error trap 

in it like: Y = ifelse ((t(R)*R), log (t(R) / R), 0). 

But if the R and Y aren’t full, we will need the coefficient matrix A. We could start with a 

diagonal with L on the diagonal. Wherever we find a zero off-diagonal entry in Y, subtract one 

from the diagonal and add one to the same off-diagonal entry of A. This accomplishes the same 

thing with slightly different logic based on what I know how to do in R; here we start with a 

matrix of all zeros except ones where the log odds are missing and then figure out what the 

diagonal should be. 

Block 2: Taking Care of Cells Missing from the Matrix of Log Odds Y 

Build_A <- function (L, Y) { 

    A = ifelse (Y,0,1)   # Mark missing cells (this includes diagonal) 

    diag(A) = L – (rowSums(A) – 1)  # Fix the diagonal (now every row sums to L) 

 return (A) } 



We can tweak the first block of code a little to take care of empty cells. This is pretty much the 

heart of the pair-wise method for estimating logit difficulties. With this and an R-interpreter, you 

could do it. However any functional, self-respecting, self-contained package would surround this 

core with several hundred lines of code to take care of the housekeeping to find and interpret the 

data and to communicate with you.  

Block 3: More General Code Taking Care of Missing Cells  

R = matrix (0, L, L)   # Define and zero an LxL matrix 

for (x in data)    # Loop through people 

{R = R + ((1x) %o% x)}  # Outer product of vectors creates square 

Y = ifelse ((t(R)*R), log (t(R) / R), 0) # Log Odds (ji) over (ij) 

A = Build_A (L, Y)   # Create coefficient matrix with empty cells 

d = solve (A, rowSums(Y))   # Solve equations simultaneously 

There is one gaping hole hidden in the rather innocuous expression, for (x in data), which will 

probably keeping you from actually using this code. The vector x is the scored, zero-one item 

responses for one person. The object data presumably holds all the response vectors for everyone 

in the sample. The idea is to retrieve one response vector at a time, add it into the counts matrix 

R in the appropriate manner, until we’ve worked our way through everyone. I’m not going to 

tackle how to construct data today. What I will do is skip ahead to the fourth line and show you 

some actual data. 

Table 1: Table of Count Matrix R for Five Multiple Choice Items 

Counts MC.1 MC.2 MC.3 MC.4 MC.5 

MC.1 0 35 58 45 33 

MC.2 280 0 240 196 170 

MC.3 112 49 0 83 58 

MC.4 171 77 155 0 99 

MC.5 253 145 224 193 0 

Table 1 is the actual counts for part of a real assessment. The entries in the table are the number 

of times the row item was missed and the column item was passed. The table is complete (i.e., all 

non-zeros except for the diagonal).  Table 2 is the log odds computed from Table 1; e.g., log 

(280/35) = 2.079 indicating item 2 is about two logits harder than item 1. Because the table is 

complete, we don’t really need the A-matrix of coefficients to get difficulty estimates; just add 

across each row and divide by five. 

Table 2: Table of Log Odds Y for Five Multiple Choice Items 

Log Odds MC.1 MC.2 MC.3 MC.4 MC.5 Logit 

MC.1 0 -2.079 -0.658 -1.335 -2.037 -1.222 

MC.2 2.079 0 1.589 0.934 0.159 0.952 

MC.3 0.658 -1.589 0 -0.625 -1.351 -0.581 

MC.4 1.335 -0.934 0.625 0 -0.668 0.072 

MC.5 2.037 -0.159 1.351 0.668 0 0.779 

This brings me to the true elegance of the algorithm in Block 3. When we build the response vector x 

correctly (a rather significant qualification,) we can use exactly the same algorithm that we have been 

using for dichotomous items to handle polytomous items as well. So far, with zero-one items, the 



response vector was a string of zeros and ones and the vector’s length was the maximum possible score, 

which is also the number of items. We can coerce partial credit responses into the same format. 

If, for example, we have a constructed response item with four categories, there are three thresholds and 

the maximum possible score is three. With four categories, we can parse the person’s response into three 

non-independent items. There are four allowable response patterns, which not coincidentally, happen to 

be the four Guttman patterns: (000), (100), (110), and (111), which correspond to the four observable 

scores: 0, 1, 2, and 3. All we need to do to make our algorithm work is replace the observed zero-to-three 

polytomous score with the corresponding zero-one Guttman pattern.  

Response CR.1-2 CR.1-2 CR.1-3 

0 0 0 0 

1 1 0 0 

2 1 1 0 

3 1 1 1 

If for example, the person’s response vector for the five MC and one CR was (101102), the new vector 

will be (10110110). The person’s total score hasn’t changed but we know have a response vector of all 

ones and zeros of length equal to the maximum possible score, which is the number of thresholds, which 

is greater than the number of items. With all dichotomous items, the length was also the maximum 

possible score and the number of thresholds but that was also the number of items. With the reconstructed 

response vectors, we can now naively apply the same algorithm and receive in return the logit difficulty 

for each threshold.  

Here are some more numbers to make it a little less obscure. 

Table 3: Table of Counts for Five Multiple Choice Items and One Constructed Response 

Counts MC.1 MC.2 MC.3 MC.4 MC.5 CR.1-1 CR.1-2 CR.1-3 

MC.1 0 35 58 45 33 36 70 4 
MC.2 280 0 240 196 170 91 234 21 
MC.3 112 49 0 83 58 52 98 14 
MC.4 171 77 155 0 99 59 162 12 
MC.5 253 145 224 193 0 74 225 25 

CR.1-1 14 5 14 11 8 0 0 0 
CR.1-2 101 46 85 78 63 137 0 0 
CR.1-3 432 268 404 340 277 639 502 0 

The upper left corner is the same as we had earlier but I have now added one three-threshold item. 

Because we are restricted to the Guttman patterns, part of the lower right is missing: e.g., you cannot pass 

item CR.1-2 without passing CR.1-1, or put another way, we cannot observe non-Guttman response 

patterns like (0, 1, 0).  

Table 4: Table of Log Odds Y for Five Multiple Choice Items and One Constructed Response 

Log 
Odds 

MC.1 MC.2 MC.3 MC.4 MC.5 CR.1-1 CR.1-2 CR.1-3 Sum Mean 

MC.1 0 -2.079 -0.658 -1.335 -2.037 0.944 -0.367 -4.682 -10.214 -1.277 

MC.2 2.079 0 1.589 0.934 0.159 2.901 1.627 -2.546 6.743 0.843 

MC.3 0.658 -1.589 0 -0.625 -1.351 1.312 0.142 -3.362 -4.814 -0.602 

MC.4 1.335 -0.934 0.625 0 -0.668 1.680 0.731 -3.344 -0.576 -0.072 

MC.5 2.037 -0.159 1.351 0.668 0 2.225 1.273 -2.405 4.989 0.624 

CR.1-1 -0.944 -2.901 -1.312 -1.680 -2.225 0 0 0 -9.062 -1.133 

CR.1-2 0.367 -1.627 -0.142 -0.731 -1.273 0 0 0 -3.406 -0.426 

CR.1-3 4.682 2.546 3.362 3.344 2.405 0 0 0 16.340 2.043 



Moving to the matrix of log odds, we have even more holes. The table includes the row sums, which we 

will need, and the row means, which are almost meaningless. The empty section of the logs odds does 

make it obvious that the constructed response thresholds are estimated from their relationship to the 

multiple choice items, not from anything internal to the constructed response itself. 

The A-matrix of coefficients (Table 5) is now useful. The rows define the simultaneous equations to be 

solved. For the multiple choice, we can still just use the row means because those rows are complete. The 

logit difficulties in the final column are slightly different than the row means we got when working just 

with the five multiple choice for two reasons: the logits are now centered on the eight thresholds rather 

than the five difficulties, and we have added in some more data from the constructed response. 

Table 5: Coefficient Matrix A for Five Multiple Choice Items and One Constructed Response 

A MC.1 MC.2 MC.3 MC.4 MC.5 CR.1-1 CR.1-2 CR.1-3 Sum Logit 

MC.1 8 0 0 0 0 0 0 0 -10.214 -1.277 

MC.2 0 8 0 0 0 0 0 0 6.743 0.843 

MC.3 0 0 8 0 0 0 0 0 -4.814 -0.602 

MC.4 0 0 0 8 0 0 0 0 -0.576 -0.072 

MC.5 0 0 0 0 8 0 0 0 4.989 0.624 

CR.1-1 0 0 0 0 0 6 1 1 -9.062 -1.909 

CR.1-2 0 0 0 0 0 1 6 1 -3.406 -0.778 

CR.1-3 0 0 0 0 0 1 1 6 16.340 3.171 

This is not intended to be a R primer so much as an alternative way to show some algebra and arithmetic. 
I have found the R language to be a convenient tool for doing matrix operations, the R packages to be 
powerful tools for many perhaps most complex analyses, and the R documentation to be almost 
impenetrable. Mine is probably no better. 

 

 

 

 


