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Ordered Categories, Disordered Thresholds 

When the experts all agree, it doesn’t necessarily follow that the converse is true. When the 

experts don’t agree, the average person has no business thinking about it. B. Russell 

The experts don’t agree on this topic and I’ve been thinking about it anyway. But I may be less 

lucid than usual. 

The categories, whether rating scale or partial credit, are always ordered: 0 always implies less 

than 1; 1 implies less than 2; 2 implies less than 3 . . . The concentric circle for k on the archery 

target is always inside (smaller thus harder to hit) than the circle for k-1. The transition points, or 

thresholds, might or might not be ordered in the data. Perhaps the circle for k-1 is so close in 

diameter to k that it is almost impossible to be inside k-1 without being inside k. Category k-1 

might be very rarely observed, unless you have very sharp arrows and very consistent archers.  

Figure 2: Rating Scale or Partial Credit with Five Categories and Ordered 

Thresholds: parameters = (-3, -1, 1, 3) 

In Figure 2 repeated above, everything was ordered nicely; Figure 3, below, illustrates another 

four-point item but the second and third thresholds have been reversed giving disordered 

threshold values of (-3, 1, -1, 3). Category Pass becomes more likely than Marginal at a logit 

value of 1 but category Credit became more likely than Pass at a logit value of -1.  

 

Figure 3: Rating Scale or Partial Credit with Five Categories and Disordered 

Thresholds: parameters = (-3, 1, -1, 3) 

There is no point on the continuum for which category Pass is the most likely response for the 

person. The person who is most likely to be in Pass has a logit location of -0.5; however, a 
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person at this location is more likely to be in either Marginal or Credit. A person who is strong 

enough to leave Marginal is unlikely to stop at Pass but is expected to go immediately to Credit. 

In spite of this confusion of threshold parameters, the category curves are still in the natural 

order: being in Pass implies more than being in Marginal and less than being in Credit. 

If we go half way and set the second threshold equal to the third (i.e., -3, 0, 0, 3), we get Figure 4 

with the three curves crossing at zero. The Pass category is more likely than it was but still never 

the most likely. 

  
Figure 4:  Rating Scale or Partial Credit with Five Categories and Ordered 

Thresholds: parameters = (-3, 0, 0, 3) 

Setting the thresholds very far apart (-3, -2, 2, 3) makes the Pass category very likely over a wide 

range as shown in Figure 5.  

Figure 5:  Rating Scale or Partial Credit with Five Categories and Ordered 

Thresholds: parameters = (-3, -2, 2, 3) 

The category curves in the figures pertain to individuals; they are the probabilities (vertical axis) 

that a person at each point on the continuum (horizontal axis) will respond in each of the 

categories. They are not empirical frequencies that have been or might be observed for any 

population, real or imagined. Whether or not any categories are under-represented or over-

represented in any particular analysis depends on the distribution of the sample of people. The 

observed frequencies are sample-dependent. Estimates of the thresholds are not sample-

dependent; we should be able to recover them consistently and objectively from any decent 

sample. 
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There is some “discussion” about how to react to disordered thresholds. Masters, and others, 

arguing from the data and tests of fit, contends that nothing in the model is violated and it simply 

reflects an under-used category, which can be informative if less than optimal. As the plots 

above show, we have no trouble talking about and visualizing disordered thresholds. The 

standard tests of fit do not object to the disorder. 

Andrich, arguing from the underlying Guttmannesque nature of categories, asserts that the 

disordering of thresholds discloses the presence of an anomaly in the data, not the model, so the 

tests of fit are answering a different question. Ordering of the categories is mandated when they 

are created: marginal requires more than fail; pass requires more than marginal; Distinguished 

requires more than Credit; Strongly Agree requires more than Agree. Ordering of thresholds is 

presumed when we accept a response in a single category to represent the person’s status on the 

item. We are effectively allowing only the Guttmann patterns shown in Table 5. Any items 

showing disordering are allowing non-Guttmann responses and should be reviewed, revised, or 

discarded.  

The debate started with the appearance of the models circa 1980 and continues to the present. 

The archery metaphor used a bull’s eye target with concentric rings and the score was the 

smallest ring the arrow touched, numbered from the largest to smallest, zero if you miss it 

entirely. The notion of disordered thresholds was described in terms of two rings so close in size 

that it is difficult to touch the larger without touching the smaller. We would expect these 

thresholds to be disordered and have no reason not to expect the data would fit the model. 

The target is in effect a very crude ruler for measuring how far the arrow is from the center. 

What the disordered thresholds are telling us is that we have a poor ruler (and poor target maker) 

and there could be a substantial increase in score for a very small improvement in performance. 

The problem isn’t so much that one ring is too small but that the adjacent ring is too big. There 

would be no problem if, for example, we have lots of rings, say, one millimeter apart. The effect 

of this improvement1 in our ruler simply underscores the inherent ordering of the categories and 

thresholds. 

 If our five-category item were decomposed into a series of four dichotomous items, the 16 

theoretically possible response strings and related categories are shown in Table 5. Only five of 

the 16 hypothetical response patterns match the Guttmann patterns. Our requirement that the 

categories be strictly ordered (i.e., 4 implies more than 3, etc.) means that those 5 Guttmann 

patterns are the only ones consistent with the Rasch view of the world.  And, because the person 

is only giving one compound response to the five imagined items, we logically associate one 

unique Guttmann pattern with each of the five response categories. And, if those are the only 

patterns allowed, how do we get any disordered thresholds?  

Andrich (2013, 2014) frames the argument in terms of a judge classifying a student essay into 

one of five2 categories: Fail, Marginal, Pass, Credit, and Distinguished, which are clearly 

ordered, both in terms of the labels and the protocols the judges use to sort the essays. The 

thresholds have a natural, intrinsic order. For a paper to be considered for Distinguished over 

Credit, any consideration about Credit versus Pass should be a foregone conclusion. The data 

                                                 
1 There is some point when we should look at a Poisson model rather than Rating Scale Model. 

2 Andrich discusses three or four categories but I’ve added “Marginal” to make it match my diagram. 
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may or may not confirm this ordering. If they don’t, then the model has exposed an anomaly that 

should be investigated. 

Table 5: Hypothetical and Guttman Response Patterns 
Category One Two Three Four Score 

0 0 0 0 0 0 

1 1 0 0 0 1 

2 1 1 0 0 2 

3 1 1 1 0 3 

4 1 1 1 1 4 

 0 0 0 1 1 

 0 0 1 0 1 

 0 0 1 1 2 

 0 1 0 0 1 

 0 1 0 1 2 

 0 1 1 0 2 

 0 1 1 1 3 

 1 0 0 1 2 

 1 0 1 0 2 

 1 0 1 1 3 

 1 1 0 1 3 

When faced with an essay whose true location is, say, -0.95 logits (just above the threshold 

between Pass and Credit in Figure 3) a perfect judge would reason, I believe this paper is more 

likely to be Credit rather than Pass but I know enough about conditional probabilities to know it 

really belongs in Marginal. If we think about independent judges3 making dichotomous decisions 

(i.e., Marginal vs. Pass; Pass vs. Credit; and Credit vs. Distinguished,) a judge for the Marginal 

vs. Pass decision would be comfortable declaring the essay Marginal; the judge for the Pass vs. 

Credit decision would lean toward Credit over Pass. Andrich believes we would have difficulty 

defending this to the parents or their attorney. 

I will leave the math and debate to authors more invested (Adams, Wu, & Wilson, 2012; 

Andrich, 2013, 2014) and take refuge in my two analogies, archery and baseball. For baseball as 

a Rating Scale Model, the batter will get a score on the batting task of 0 to 4 based on how many 

bases are touched. These categories are clearly ordered; you can’t get to second without touching 

first first, and so on. You don’t actually score a point in baseball until you touch all four bases, 

but your likelihood of doing that improves with each base reached. 

Table 6: Reasonable Likelihoods of Bases Reached 

CATEGORY 

RELATIVE 

FREQUENCIES 

Team Batter 1 Batter 4 

0 0.68 0.65 0.75 

1 0.23 0.30 0.20 

2 0.05 0.04 0.01 

3 0.01 0.01 0.00 

4 0.03 0.00 0.04 

                                                 
3 Andrich (2013) established the equivalence between four judges making independent, dichotomous decisions and 

one judge making a single, non-independent, compound decision. 
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As noted in an earlier example, a reasonably good team might have category frequencies for the 

five categories 0 to 4 respectively that are shown in the second column of table 6. This is the data 

and it would typically lead to disordered thresholds. It may or may not pass the Pearsonian tests 

of fit but that’s a different question. Category frequencies for two not necessarily typical batters 

are shown in the last two columns. 

If we know nothing else about the data, we might speculate (and it is speculating) that category 4 

is very close to category 3 so that it is easy to reach 4 if we reached 3. But we do know some 

other things, if you grew up with baseball rather than cricket. Four-base hits (in organized 

baseball) happen almost exclusively by hitting the ball over the fence and out of the park. Having 

done that, it does not matter how long you take to touch the bases in the proper order. Three-base 

hits happen exclusively by hitting the ball in the field of play and running fast enough to reach 

third before the fielders have managed to retrieve it. The batter with lots of 4s depends heavily 

on power; the batter with any 3s depends more on speed. 

We might have speculated earlier that the data arose because the distribution of batters, while 

unidimensional, is bimodal. If there were a few very proficient batters who almost always get 4s, 

then the model could fit fine. However, this speculation is about the empirical distribution of all 

batters on the team, not category probabilities of individuals. If we try to put batter 4 into the 

class of very proficient because of all the 4s, we would have to explain why so many 0s. The 

basic idea is that there are two very different ways to score well (speed or power) and they lead 

to very different response patterns in the data. 

Returning briefly to archery and measuring the distance from the edge, disordered thresholds are 

analogous to having an arrow on the line between, say, 99 and 100 millimeters and assigning a 

score of 98 based on the conditional probabilities. With my grounding in Fisher, I am inclined 

toward the view of using the model to expose anomalies in the data and using the theory to 

explain them rather than the more Pearsonian approach of fitting a model to the data and calling 

that “explaining.” Models must be used but never believed. (M. Wilk) 

 


