Ordered Categories, Disordered Thresholds

When the experts all agree, it doesn’t necessarily follow that the converse is true. When the
experts don’t agree, the average person has no business thinking about it. B. Russell

The experts don’t agree on this topic and I’ve been thinking about it anyway. But I may be less
lucid than usual.

The categories, whether rating scale or partial credit, are always ordered: 0 always implies less
than 1; 1 implies less than 2; 2 implies less than 3 . . . The concentric circle for k on the archery
target is always inside (smaller thus harder to hit) than the circle for k-1. The transition points, or
thresholds, might or might not be ordered in the data. Perhaps the circle for k-1 is so close in
diameter to k that it is almost impossible to be inside k-1 without being inside k. Category k-1
might be very rarely observed, unless you have very sharp arrows and very consistent archers.
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Figure 2: Rating Scale or Partial Credit with Five Categories and Ordered
Thresholds: parameters = (-3, -1, 1, 3)

In Figure 2 repeated above, everything was ordered nicely; Figure 3, below, illustrates another
four-point item but the second and third thresholds have been reversed giving disordered
threshold values of (-3, 1, -1, 3). Category Pass becomes more likely than Marginal at a logit
value of 1 but category Credit became more likely than Pass at a logit value of -1.
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Figure 3: Rating Scale or Partial Credit with Five Categories and Disordered
Thresholds: parameters = (-3, 1, -1, 3)

There is no point on the continuum for which category Pass is the most likely response for the
person. The person who is most likely to be in Pass has a logit location of 0.0; however, a person
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at this location is more likely to be in either Marginal or Credit. A person who is strong enough
to leave Marginal is unlikely to stop at Pass but is expected to go immediately to Credit. In spite
of this confusion of threshold parameters, the category curves are still in the natural order: being
in Pass implies more than being in Marginal and less than being in Credit.

If we go half way and set the second threshold equal to the third (i.e., -3, 0, 0, 3), we get Figure 4
with the three curves crossing at zero. The Pass category is more likely than it was but still never
the most likely.
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Figure 4: Rating Scale or Partial Credit with Five Categories and Ordered
Thresholds: parameters = (-3, 0, 0, 3)

Setting the thresholds very far apart (-3, -2, 2, 3) makes the Pass category very likely over a wide
range as shown in Figure 5.
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Figure 5: Rating Scale or Partial Credit with Five Categories and Ordered
Thresholds: parameters = (-3, -2, 2, 3)

The category curves in the figures pertain to individuals; they are the probabilities (vertical axis)
that a person at each point on the continuum (horizontal axis) will respond in each of the
categories. They are not empirical frequencies that have been or might be observed for any
population, real or imagined. Whether or not any categories are under-represented or over-
represented in any particular analysis depends on the distribution of the sample of people. The
observed frequencies are sample-dependent. Estimates of the thresholds are not sample-
dependent; we should be able to recover them consistently and objectively from any decent
sample.
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There is some “discussion” about how to react to disordered thresholds. Masters, and others,
arguing from the data and tests of fit, contend that nothing in the model is violated and it simply
reflects an under-used category, which can be informative if less than optimal. As the plots
above show, we have no trouble talking about and visualizing disordered thresholds. The
standard tests of fit do not object to the disorder.

Andrich, arguing from the underlying Guttmannesque nature of categories, asserts that the
disordering of thresholds discloses the presence of an anomaly in the data, not the model, so the
tests of fit are answering a different question. Ordering of the categories is mandated when they
are created: pass requires more than fail; Distinguished requires more than Credit; Strongly
Agree requires more than Agree. Ordering of thresholds is presumed when we accept a response
in a single category to represent the person’s status on the item. We are effectively allowing only
the Guttmann patterns shown in Table 5. Any items showing disordering are allowing non-
Guttmann responses and should be reviewed, revised, or discarded.

The debate started with the appearance of the models circa 1980 and continues to the present.

The archery metaphor used a bull’s eye target with concentric rings and the score was the
smallest ring the arrow touched, numbered from the largest to smallest, zero if you miss it
entirely. The notion of disordered thresholds was described in terms of two rings so close in size
that it is difficult to touch the larger without touching the smaller. We would expect these
thresholds to be disordered and have no reason not to expect the data would fit the model.

The target is in effect a very crude ruler for measuring how far the arrow is from the center.
What the disordered thresholds are telling us is that we have a poor ruler (and poor target maker)
and there could be a substantial increase in score for a very small improvement in performance.
The problem isn’t so much that one ring is too small but that the adjacent ring is too big. There
would be no problem if, for example, we have lots of rings, say, one millimeter apart. The effect
of this improvement in our ruler simply underscores the inherent ordering of the categories and
thresholds.

If our five-category item were decomposed into a series of four dichotomous items, the 16
theoretically possible response strings and related categories are shown in Table 5. Only five of
the 16 hypothetical response patterns match the Guttmann patterns. Our requirement that the
categories be strictly ordered (i.e., 4 implies more than 3, etc.) means that those 5 Guttmann
patterns are the only ones consistent with the Rasch view of the world. And, because the person
is only giving one compound response to the five imagined items, we logically associate one
unique Guttmann pattern with each of the five response categories. And, if those are the only
patterns allowed, how do we get any disordered thresholds?

Andrich (2013, 2014) frames the argument in terms of a judge classifying a student essay into
one of five? categories: Fail, Marginal, Pass, Credit, and Distinguished, which are clearly
ordered, both in terms of the labels and the protocols the judges use to sort the essays. The
thresholds have a natural, intrinsic order. For a paper to be considered for Distinguished over
Credit, any consideration about Credit versus Pass should be a foregone conclusion. The data

! There is some point when we should look at a Poisson model rather than Rating Scale Model.

2 Andrich discusses three or four categories but I've added “Marginal” to make it match my diagram.
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may or may not confirm this ordering. If they don’t, then the model has exposed an anomaly that
should be investigated.

Table 5: Hypothetical and Guttman Response Patterns
Category One Two Three Four Score
0
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When faced with an essay whose true location is, say, -0.95 logits (just above the threshold
between Pass and Credit in Figure 3) a perfect judge would reason, | believe this paper is more
likely to be Credit rather than Pass but | know enough about conditional probabilities to know it
really belongs in Marginal. If we think about independent judges® making dichotomous decisions
(e.g., Marginal vs. Pass; Pass vs. Credit; and Credit vs. Distinguished,) a judge for the Fail vs.
Marginal decision would be comfortable declaring the essay a Fail; at the same time, the judge
for the Marginal vs. Pass decision would lean toward Pass over Marginal. Andrich believes we
would have difficulty defending this to the parents or their attorney.

| will leave the math and debate to authors more invested (Adams, Wu, & Wilson, 2012;
Andrich, 2013, 2014) and take refuge in my two analogies, archery and baseball. For baseball as
a Rating Scale Model, the batter will get a score on the batting task of 0 to 4 based on how many
bases are touched. These categories are clearly ordered; you can’t get to second without touching
first first, and so on. As noted in an earlier example, a reasonably good team might have category
frequencies for the five categories 0 to 4 respectively that are shown in the second column of
table 6. This is the data and it would typically lead to disordered thresholds. It may or may not
pass the Pearsonian tests of fit but that’s a different question. Category frequencies for two not-
necessarily typical batters are shown in the last two columns.

If we know nothing else about the data, we might speculate (and it is speculating) that category 4
is very close to category 3 so that it is easy to reach 4 if we once reached 3. But we do know
some other things, if you grew up with baseball rather than cricket. Four-base hits (in organized
baseball) happen almost exclusively by hitting the ball over the fence and out of the park. Having
done that, it does not matter how long you take to touch the bases in the proper order. Three-base
hits happen exclusively by hitting the ball in the field of play and running fast enough to reach

3 Andrich (2013) established the equivalence between four judges making independent, dichotomous decisions and
one judge making a single, non-independent, compound decision.
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third before the fielders have managed to retrieve it. The batter with lots of 4s depends heavily
on power; the batter with any 3s depends more on speed.

Table 6: Relative Category Frequencies for Some Baseball Batters
RELATIVE

FREQUENCIES

CATEGORY | Team Batter1l Batter4

0 0.68 0.65 0.75
1 0.23 0.30 0.20
2 0.05 0.04 0.01
3 0.01 0.01 0.00
4 0.03 0.00 0.04

We might have speculated earlier that the data arose because the distribution of batters, while
unidimensional, is bimodal. If there were a few very proficient batters who almost always get 4s,
then the model could fit fine. However, this speculation is about the empirical distribution of all
batters on the team, not category probabilities of individuals. If we try to put batter 4 into the
class of very proficient because of all the 4s, we would have to explain why so many 0s. The
basic idea is that there are two very different ways to score well (speed or power) and they lead
to very different response patterns in the data.

Returning briefly to archery and scoring the performance by measuring the distance from the
edge, disordered thresholds are analogous to having an arrow on the line between, say, 99 and
100 millimeters and assigning a score of 98 based on the conditional probabilities. With my
indoctrination in Fisher, I am inclined toward the view of using the model to expose anomalies in
the data and using the theory to explain them rather than the more Pearsonian approach of fitting
a model to the data and calling that “explaining.”

Page 5 of 5



