
Computer-Administered Test to Learn 

One of the political issues with computer administered tests (CAT) is what to do about 

examinees who want to revisit, review, and revise earlier responses. Examinees sometimes 

express frustration when they are not allowed to; psychometricians don’t like the option being 

available because each item selection is based on previous successes and failures, so changing 

answers after moving on has the potential of upsetting the psychometric apple cart. One of our 

more diabolical thinkers has suggested that a clever examinee would intentionally miss several 

early items, thereby getting an easier test, and returning later to fix the intentionally incorrect 

responses, ensuring more correct answers and presumably a higher ability estimate. While this 

strategy could sometimes work in the examinee’s favor (if receiving an incorrect estimate is 

actually in anyone’s favor), it is somewhat limited because many right answers on a easy test is 

not necessarily better than fewer right answers on a difficult test and because a good CAT engine 

should recover from a bad start given the opportunity. While we might trust in CAT, we should 

still row away from the rocks. 

The core issue for educational measurement is test as contest versus a useful self-assessment. 

When the assessments are infrequent and high stakes with potentially dire consequences for 

students, schools, districts, administrators, and teachers, there is little incentive not to look for a 

rumored edge whenever possible1. Frequent, low-stakes tests with immediate feedback could 

actually be valued and helpful to both students and teachers. There is research, for example, 

suggesting that taking a quiz is more effective for improved understanding and retention than 

rereading the material. 

The issue of revisiting can be avoided, even with high stakes, if we don’t let the examinee leave 

an item until the response is correct. First, present a multiple choice item (hopefully more 

creatively than putting a digitized image of a print item on a screen). If we get the right response, 

we say “Congratulations” or “Good work” and move on to the next item. If the response is 

incorrect, we give some kind of feedback, ranging from “Nope, what are you thinking?” to 

“Interesting but not what we’re looking for” or perhaps some discussion of why it isn’t what 

we’re looking for (recommended). Then we re-present the item with the selected, incorrect foil 

omitted.  Repeat. The last response from the examinee will always be the correct one, which 

might even be retained. 

The examinee’s score on the item is the number of distractors remaining when we finally get to 

the correct response2. Calibration of the thresholds can be quick and dirty. It is convenient for me 

here to use the “rating scale” form for the logit [v – (i + ij)]. The highest threshold, associated 

with giving the correct response on the first attempt, is the same as the logit difficulty of the 

original multiple choice item, because that is exactly the situation we are in, and im = 0 for an 

item with m distractors (i.e., m+1 foils.) The logits for the other thresholds depend on the 

attractiveness of the distractors. (usually when written in this form, the ij sum to zero but that’s 

not helpful here. 

To make things easy for myself, I will use a hypothetical example of a four-choice item with 

equally popular distractors. The difficulty of the item is captured in the i and doesn’t come into 

                                                           
1 Admission, certifying, and licensing tests have other cares and concerns. 
2 We could give a maximum score of one for an immediate correct response and fractional values for the later 

stages, but using fractional scores would require slightly different machinery and have no effect on the measures. 



the thresholds. Assuming an item with a p-value of 0.5 and equally attractive distractors, the 

incorrect responses will be spread across the three, with 17% on each. After one incorrect 

response, we expect the typical examinee to have a [0.5 / (0.5+.017+0.17)] = 0.6 chance of 

success on the second try. A 0.6 chance of success corresponds to a logit difficulty ln [(1 – 0.6) / 

0.6] = –0.4. Similarly for the third attempt, the probability of success is [0.5 / (0.5+.017)] = 0.75 

and the logit difficulty ln [(1 – 0.75) / 0.75] = –1.1. All of which gives us the three thresholds  
= {-1.1, -0.4, 0.0}. 

This was easy because I assumed distractors that are equally attractive across the ability 

continuum; then the order in which they are eliminated doesn’t matter in the arithmetic. With 

other patterns, it is more laborious but no more profound. If, for example, we have an item like:  

1. Litmus turns what color in acid?  

A. red  

B. blue  

C. black  

D. white,  

we could see probabilities across the foils like (0.5, 0.4, 0.07, and 0.03) for the standard 

examinee. There is one way to answer correctly on the first attempt and score 3; this is the 

original multiple choice item and the probability of this is still 0.5. There are, assuming we didn’t 

succeed on the first attempt, three ways to score 2 (ba, ca, and da) that we would need to 

evaluate. And even more paths to scores of 1 or zero, which I’m not going to list. 

Nor does it matter what p-value we start with, although the arithmetic would change. For 

example, reverting to equally attractive distractors, if we start with p=0.75 instead of 0.5, the 

chance of success on the second attempt is 0.78 and on the third is 0.875. This leads to logit 

thresholds of ln [(1 – 0.78) / 0.78] = –1.25, and ln [(1 – 0.875) / 0.875] = –1.95. There is also a 

non-zero threshold for the first attempt of ln [(1 – 0.7) / 0.7] = –0.85. This is reverting to the 

“partial credit” form of the logit (v – ij). To compare to the earlier paragraph requires taking the 

-0.85 out so that (-0.85, -1.25, -1.95) becomes -0.85 + (0.0, -0.4, -1.1) as before. I should note 

that this not the partial credit or rating scale model although a lot of the arithmetic turns out to be 

pretty much the same (see Linacre, 1991). It has been called “Answer until Correct;” or the 

Failure model because you keep going on the item until you succeed. This contrasts with the 

Success model3 where you keep going until you fail. Or maybe I have the names reversed. 

Because we don’t let the examinee end on a wrong answer and we provide some feedback along 

the way, we are running a serious risk that the examinees could learn something during this 

process with feedback and second chances. This would violate an ancient tenet in assessment 

that the agent shalt not alter the object, although I’m not sure how the Quantum Mechanics folks 

feel about this.  

 

                                                           
3 DBA, the quiz show model. 


