
Simplistic Statistics for Control of Polytomous Items 

Several issues ago, I discussed estimating the logit difficulties with a simple pair algorithm, 

although this is viewed with distain in some quarters because it’s only least squares and does not 

involve maximum likelihood or Bayesian estimation. It begins with counting the number of 

times item a is correct and item b incorrect and vice versa; then converting the counts to log 

odds; and finally computing the logit estimates for dichotomous items as the row averages, if the 

data are sufficiently well behaved. If the data aren’t sufficiently well behaved, it could involve 

solving some simultaneous equations instead of taking the simple average. 

This machinery was readily adaptable to include polytomous items by translating the items 

scores, 0 to mi, into the corresponding mi + 1 Guttmann patterns. That is, a five-point item has 

six possible scores 0 to 5 and six Guttmann patterns (00000, 10000, 11000, 11100, 11110, and 

11111). Treating these just like five more dichotomous items allows us to use the exactly the 

same algorithm to compute the logit difficulty (aka, threshold) estimates. (The constraints on the 

allowable patterns means there will always be some missing log odds and the row averages never 

work; polytomous items will always require solving the simultaneous equations but the computer 

doesn’t much care.) 

While the pair algorithm leads to some straightforward statistics of its own for controlling the 

model, my focus is always on the simple person-item residuals because the symmetry leads 

naturally to statistics for monitoring the person’s behavior as well as the items performance. For 

dichotomous items, the basic residual is yni = xni – pni, which can be interpreted as the person’s 

deviation from the item’s p-value. The basic residual can be manipulated and massaged any 

number of ways; for example, a squared standardized residual z2
ni = (xni – pni)

 2 / [pni (1- pni)], or 

(1 – p) / p if xni = 1 or p / (1 – p) if xni = 0, which can be interpreted as the odds against the 

response. 

A logical extension to polytomous items (Ludlow, 1982) would be, for the basic residual, yni = 

xni – E(xni) and, for the standardized residual, zni = (xni – E(xni)) / √Var(xni), where xni is the 

observed item score from 0 to mi, where mi is greater than one. The interpretation for the basic 

form is now the deviation in item score (which is the same as the deviation in p-value when mi is 

one.) The interpretation for z2 is messier. This approach has been used extensively for the past 

thirty plus years, although not exploited as fully as it might be1. And there is an alternative that 

salvages much of the dichotomous machinery. And we have made dichotomous items out of the 

polytomous scores already. 

We’re back in the world of 1’s and 0’s; or maybe we never left. All thresholds are dichotomies 

where you either pass, succeed, endorse, or do whatever you need to get by or you don’t. We 

have an observed value x = 0 or 1, an expected value p = (0, 1), and any form of residual we 

like, y or z. The following table shows the residuals for the six Guttmann patterns, based on a 

person with logit ability equal zero and a five-point item with nicely spaced thresholds (-2, -1, 0, 

1, 2). Because the thresholds are symmetric and the person is centered on them, there is a lot or 

repetition. Values in bold font are the ones that changed from the preceding panel. 

 

                                                 
1 As with dichotomous items, we tend to sum over items (occasionally people) to get Infit or Outfit and proceed 

merrily on our way trusting everything is fine. 



Category 1 2 3 4 5     

Threshold -2.0 -1.0 0.0 1.0 2.0 Sum   

P(r=k|=0) 0.13 0.35 0.35 0.13 0.02 1.0*  

p(x=1|=0) 0.88 0.73 0.50 0.27 0.12   

x 0 0 0 0 0 0   

y -0.9 -0.7 -0.5 -0.3 -0.1 6.3 Squared 

y2 0.8 0.5 0.3 0.1 0.0 1.6 of Squares 

z -2.7 -1.6 -1.0 -0.6 -0.4 40.2 Squared 

z2 7.4 2.7 1.0 0.4 0.1 11.6 of Squares 

        

x 1 0 0 0 0 1   

y 0.1 -0.7 -0.5 -0.3 -0.1 2.3 Squared 

y2 0.0 0.5 0.3 0.1 0.0 0.9 of Squares 

z 0.4 -1.6 -1.0 -0.6 -0.4 10.6 Squared 

z2 0.1 2.7 1.0 0.4 0.1 4.4 of Squares 

        

x 1 1 0 0 0 2   

y 0.1 0.3 -0.5 -0.3 -0.1 0.3 Squared 

y2 0.0 0.1 0.3 0.1 0.0 0.4 of Squares 

z 0.4 0.6 -1.0 -0.6 -0.4 1.0 Squared 

z2 0.1 0.4 1.0 0.4 0.1 2.0 of Squares 

        

x 1 1 1 0 0 3   

y 0.1 0.3 0.5 -0.3 -0.1 0.3 Squared 

y2 0.0 0.1 0.3 0.1 0.0 0.4 of Squares 

z 0.4 0.6 1.0 -0.6 -0.4 1.0 Squared 

z2 0.1 0.4 1.0 0.4 0.1 2.0 of Squares 

        

x 1 1 1 1 0 4   

y 0.1 0.3 0.5 0.7 -0.1 2.3 Squared 

y2 0.0 0.1 0.3 0.5 0.0 0.9 of Squares 

z 0.4 0.6 1.0 1.6 -0.4 10.6 Squared 

z2 0.1 0.4 1.0 2.7 0.1 4.4 of Squares 

        

x 1 1 1 1 1 5   

y 0.1 0.3 0.5 0.7 0.9 6.3 Squared 

y2 0.0 0.1 0.3 0.5 0.8 1.6 of Squares 

z 0.4 0.6 1.0 1.6 2.7 40.2 Squared 

z2 0.1 0.4 1.0 2.7 7.4 11.6 of Squares 

*Probabilities sum to one when we include category k=0. 

Not surprisingly, for a person with a true expected response of 2.5, we are surprised when the 

person’s response was zero or five (∑ zvik
2mi

k=1 = 11.6); less surprised by responses of one or four 

(∑ zvik
2mi

k=1 = 4.4); and quite happy with responses of two or three (∑ zvik
2mi

k=1 = 2.0). We would feel 

pretty much the same looking at [z]2 or almost any other number in the sum column. Not 

surprisingly, when we look at the numbers for each category, we are surprised when the person is 

stopped by a low valued threshold (e.g., the first panel, first column) or not stopped by a high 

valued (the last panel, last column.) 



That’s what happens with nicely spaced thresholds targeted on the person. If the annoying 

happens and some thresholds are reversed, the effects on these calculations are less dramatic than 

one might expect or hope. For example, with thresholds of (-2, -1, 1, 0, 2), the sum of z2 for the 

six Guttmann patterns are (11.6, 4.4, 2.0, 4.4, 4.4, and 11.6). Comparing those to the table above, 

only the fourth value (response x=3) is changed at all (4.4 instead of 2.0.)  How that would 

present itself in real data depends on who the people are and how they are distributed. The 

relevant panel is below; the others are unchanged. 

Category 1 2 3 4 5     

Threshold -2.0 -1.0 1.0 0.0 2.0 Sum   

P(r=k|=0) 0.17 0.45 0.17 0.17 0.02 1.0*  

p(x=1|=0) 0.88 0.73 0.27 0.50 0.12   

x 1 1 1 0 0 3   

y 0.1 0.3 0.7 -0.5 -0.1 0.3 Squared 

y2 0.0 0.1 0.5 0.3 0.0 0.9 of Squares 

z 0.4 0.6 1.6 -1.0 -0.4 1.6 Squared 

z2 0.1 0.4 2.7 1.0 0.1 4.4 of Squares 

*Probabilities sum to one when we include category k=0. 

 While there is nothing in the mathematics of the model that says the thresholds must be ordered, 

it makes the categories, which are ordered, a little puzzling. We are somewhat surprised (z2=2.7) 

that the person passed the third threshold but at the same time thought the person had a good 

chance (y=-0.5) of passing the fourth. 

Reversing the last two thresholds (-2, -1, 0, 2, 1) gives similar results; in this case, only the 

calculations for response x=4 changes. 

 

Category 1 2 3 4 5     

Threshold -2.0 -1.0 0.0 2.0 1.0 Sum   

P(r=k|=0) 0.14 0.38 0.38 0.05 0.02 1.0*  

P*(x=1|=0) 0.88 0.73 0.50 0.12 0.27   

x 1 1 1 1 0 4   

y 0.1 0.3 0.5 0.9 -0.3 2.3 Squared 

y2 0.0 0.1 0.3 0.8 0.1 1.2 of Squares 

z 0.4 0.6 1.0 2.7 -0.6 16.7 Squared 

z2 0.1 0.4 1.0 7.4 0.4 9.3 of Squares 

*Probabilities sum to one when we include category k=0. 

This discussion has been more about the person than the item. Given estimates of the person’s 

logit ability and the item’s thresholds, we can say relatively intelligent things about what we 

think of the person’s score on the item; we are surprised if difficult thresholds are passed or easy 

thresholds are missed. Whether or not any of this is visible in the item statistics depends on 

whether or not there are sufficient numbers of people behaving oddly. 

Whether or not the disordered thresholds affects the item mean squares depends on how the item 

is targeted and the distribution of abilities. Estimation of the threshold logits is still not affected 

by the ability distribution, which keeps us comfortably in the Rasch family, even if we are a little 

puzzled. 

 


